A journey through Bayesian hierarchical models:
Analyzing income and education in Thailand

Dr. Irving Gómez Méndez
April 2024
This work was done in collaboration with Dr. Chainarong Amornbunchornvej, NECTEC7

Hierarchical models with one cluster: income per region

Crint What is a Bayesian model?

Input:

We model a random variable using the likelihood $Y \sim p(Y \mid \theta)$.
We model the uncertainty on θ using a prior distribution $p(\theta)$.
Output:
We update our uncertainty on θ through Bayes rule, getting the posterior distribution $p(\theta \mid \mathbf{Y})$.

We capture the total uncertainty on Y using the posterior predictive distribution $p(Y \mid \mathbf{Y})$.

There are 76 provinces grouped in 6 different regions.
Let be $Y_{i j}$ the income in province i belonging to region j. We assume that $Y_{i j} \mid \theta_{j}, \sigma_{j}^{2} \sim \mathcal{N}\left(\theta_{j}, \sigma_{j}^{2}\right)$ (Likelihood).

Each region has an independent model.

Prior distribution

$$
p\left(\boldsymbol{\theta}, \boldsymbol{\sigma}^{2}\right) \propto \prod_{j=1}^{J} \frac{1}{\sigma_{j}^{2}} \mathbb{1}_{\mathbb{R}}\left(\theta_{j}\right) \mathbb{1}_{(0, \infty)}\left(\sigma_{j}^{2}\right)
$$

Posterior distributions

Regional average of monthly income, θ_{j}

Within-region deviation, σ_{j}

Posterior predictive distribution

Large intervals, because regions don't share information.

Intervals overlap for most of the regions.
All the parameters might be estimating the same quantity.

It is highly unlikely that the regions are independent between them.

Same model for all the regions.
$\theta_{j}=\theta, \sigma_{j}=\sigma$, for all j.

Prior distribution

$$
p\left(\theta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}} \mathbb{1}_{\mathbb{R}}(\theta) \mathbb{1}_{(0, \infty)}\left(\sigma^{2}\right)
$$

Posterior distributions

Posterior predictive distribution

Province average of monthly income, $Y_{i j}$

Narrow intervals.

Common mean θ can barely explain the mean of a few regions.

Overestimated σ.

Income in Northern Thailand is overestimated. Income in Eastern Thailand is underestimated.

Likelihood

$$
Y_{i j} \mid \theta_{j}, \sigma^{2} \sim \mathcal{N}\left(\theta_{j}, \sigma^{2}\right)
$$

Prior distributions

$$
\begin{aligned}
\theta_{j} \mid \mu, \tau^{2} & \sim \mathcal{N}\left(\mu, \tau^{2}\right) \\
p(\mu) & \propto \mathbb{1}_{\mathbb{R}}(\mu) \\
p\left(\tau^{2}\right) & \propto \mathbb{1}_{(0, \infty)}\left(\tau^{2}\right) \\
p\left(\sigma^{2}\right) & \propto \frac{1}{\sigma^{2}} \mathbb{1}_{(0, \infty)}\left(\sigma^{2}\right)
\end{aligned}
$$

Posterior distributions

Regional average of monthly income, θ_{j}

Within-region deviation, σ_{j}

Posterior predictive distribution

Province average of monthly income, $Y_{i j}$

Less uncertainty than independent models.

Better performance than complete pooling model.

The common variance is not overestimated.

A common variance cannot explain the observed variability.

Drawbacks of Bayesian models:
We must ensure the existence of the posterior distribution. This requires that we analyze the mathematical properties of the model.

The model is not going to do it for us! That's the hatch!

(2) Civit Ace Hierarchical model varying

 within-cluster variance

$$
\begin{aligned}
Y_{i j} \mid \theta_{j}, \sigma^{2} & \sim \mathcal{N}\left(\theta_{j}, \sigma^{2}\right) \\
\theta_{j} \mid \mu, \tau^{2} & \sim \mathcal{N}\left(\mu, \tau^{2}\right) \\
p(\mu) & \propto \mathbb{1}_{\mathbb{R}}(\mu) \\
p\left(\tau^{2}\right) & \propto \mathbb{1}_{(0, \infty)}\left(\tau^{2}\right) \\
\sigma_{j}^{2} \mid \nu, \rho^{2} & \sim \text { Inverse- } \chi^{2}\left(\nu, \rho^{2}\right) \\
p\left(\rho^{2}\right) & \propto \frac{1}{\rho^{2}} \mathbb{1}_{(0, \infty)}\left(\rho^{2}\right) \\
\nu & \sim ?
\end{aligned}
$$

It remains challenging to propose priors for the degrees of freedom of a distribution.

We consider three approaches:

- Set ν equal to some estimated value $\hat{\nu}$. For example, using the method of moments

$$
\hat{\nu}=\frac{2\left(E_{s^{2}}\right)^{2}}{V_{s^{2}}}+4 .
$$

- Use a vague prior, for example $p(\nu) \propto \nu^{-h} \mathbb{1}_{(0, \infty)}(\nu)$, for some $h \in[0, \infty)$.
- Use a regularizing prior, for example $\nu \sim \operatorname{Exponential}(1 / \hat{\nu})$.

Cons:

- Set $\nu=\hat{\nu}$: Eliminates the uncertainty on ν.
- Improper distribution: Does not give guarantee for the existence of the posterior distribution.
- Regularizing prior: Which distribution to use?

Pros:

- Set $\nu=\hat{\nu}$: We don't have to worry about the posterior.
- Improper distribution: There's nothing to estimate.
- Regularizing prior: Maintain the uncertainty and guarantee the existence of the posterior distribution.

Posterior distributions

Regional average of monthly income, θ_{j}

Within-region deviation, σ_{j}

Posterior predictive distribution

Province average of monthly income, $Y_{i j}$

Posterior distribution

National average of monthly income, μ

Province average of monthly income

Regional average of monthly income

$\xrightarrow[\text { less bias in } \theta_{j}]{\text { more variance in } \theta_{j}}$

Hierarchical model with two non-nested clusters: income per region and education level

We define the next rule:

Education	Years of education	Education level
Uneducated	0	
Kindergarten	0	Low
Pre-elementary school	3	
Elementary school	6	
Junior high school	9	Mid
Senior high school	12	
Vocational degree	14	High
Bachelor degree	16	
Post-graduate	19	

$$
\begin{aligned}
Y_{i j k} \mid \theta_{j}, \lambda_{k}, \sigma_{j k}^{2} & \sim \mathcal{N}\left(\theta_{j}+\lambda_{k}, \sigma_{j k}^{2}\right) \\
\theta_{j} \mid \mu, \tau^{2} & \sim \mathcal{N}\left(\mu, \tau^{2}\right) \\
\mu & \sim \mathcal{N}\left(\hat{\mu}, \hat{\sigma}_{\mu}^{2}\right) \\
\tau^{2} & \sim \operatorname{Exponential}\left(1 / \hat{\tau}^{2}\right) \\
\lambda_{k} \mid \xi^{2} & \sim \mathcal{N}\left(0, \xi^{2}\right) \\
\xi^{2} & \sim \operatorname{Exponential}\left(1 / \hat{\xi}^{2}\right) \\
\sigma_{j k}^{2} \mid \nu_{k}, \rho_{k}^{2} & \sim \operatorname{Inverse}-\chi^{2}\left(\nu_{k}, \rho_{k}^{2}\right) \\
\nu_{k}^{2} & \sim \operatorname{Exponential}\left(1 / \hat{\nu}_{k}^{2}\right) \\
p\left(\rho_{k}^{2}\right) & \propto \frac{1}{\rho_{k}^{2}} \mathbb{1}_{(0, \infty)}\left(\rho_{k}^{2}\right)
\end{aligned}
$$

(8) CMER ABE

Difference in monthly income between different education levels, $\lambda_{k}-\lambda_{k^{\prime}}$

High vs. mid level

High vs. low level

Mid vs. low level

Education Level: Low

Education Level: Mid

Education Level: High

Bayesian hierarchical regression: income considering years of formal education

We define the next rule:

Education	Years of education	Education level
Uneducated	0	
Kindergarten	0	Low
Pre-elementary school	3	
Elementary school	6	
Junior high school	9	Mid
Senior high school	12	
Vocational degree	14	High
Bachelor degree	16	
Post-graduate	19	

(3) Civit A National model

Let be $X_{i j}$ the average years of formal education in the province i belonging to region j.

$$
\begin{aligned}
& Y_{i j} \mid \alpha, \beta, \sigma^{2} \sim \mathcal{N}\left(\alpha+\beta\left(X_{i j}-\bar{X}_{. .}\right), \sigma^{2}\right) \\
& p\left(\alpha, \beta, \sigma^{2}\right) \propto \frac{1}{\sigma^{2}} \mathbb{1}_{\mathbb{R}}(\alpha) \mathbb{1}_{\mathbb{R}}(\beta) \mathbb{1}_{(0, \infty)}\left(\sigma^{2}\right)
\end{aligned}
$$

National average of monthly income, α

National ratio of income per year-of-education, β

Suitable to explain national behavior.
We cannot say anything at a regional level.

(2) Civint Me Separate models

Let be $X_{i j}$ the average years of formal education in the province i belonging to region j.

Regional average of monthly income, α_{j}

Large credible intervals.
The intervals include negative values for β_{j}, which seems implausible.
Pretending that each region is independent for the others seems unrealistic.

(2) CiVil ace Bayesian hierarchical regression varying intercepts

$$
\begin{aligned}
Y_{i j} \mid \alpha_{j}, \beta_{j}, \sigma_{j}^{2} & \sim \mathcal{N}\left(\alpha_{j}+\beta_{j}\left(X_{i j}-\bar{X}_{\cdot j}\right), \sigma_{j}^{2}\right)^{\bullet} \\
\alpha_{j} \mid \mu, \tau^{2} & \sim \mathcal{N}\left(\mu, \tau^{2}\right)
\end{aligned}
$$

$$
\mu \sim \mathcal{N}\left(\hat{\mu}, \hat{\sigma}_{\mu}^{2}\right)
$$

$$
\tau^{2} \sim \text { Exponential }\left(1 / \hat{\tau}^{2}\right)
$$

$$
p(\beta) \propto \mathbb{1}_{\mathbb{R}}(\beta)
$$

$$
\sigma_{j}^{2} \mid \nu, \rho^{2} \sim \text { Inverse- } \chi^{2}\left(\nu, \rho^{2}\right)
$$

$$
\nu^{2} \sim \operatorname{Exponential}\left(1 / \hat{\nu}^{2}\right)
$$

$$
p\left(\rho^{2}\right) \propto \frac{1}{\rho^{2}} \mathbb{1}_{(0, \infty)}\left(\rho^{2}\right)
$$

Region Monthly Income Mean, α_{j}

National ratio of income per year-of-education, β

The distribution of β includes negative values.
Different slopes could be preferred.

Bayesian hierarchical regression varying intercepts and slopes

α_{j} and β_{j} will follow a multivariate normal distribution with mean (μ, γ) and a matrix of variances and covariances

$$
S=\left(\begin{array}{cc}
\tau^{2} & \tau \zeta \rho_{\alpha, \beta} \\
\tau \zeta \rho_{\alpha, \beta} & \zeta^{2}
\end{array}\right)
$$

which can be written as

$$
S=\left(\begin{array}{ll}
\tau & 0 \\
0 & \zeta
\end{array}\right) R\left(\begin{array}{ll}
\tau & 0 \\
0 & \zeta
\end{array}\right)
$$

where

$$
R=\left(\begin{array}{cc}
1 & \rho_{\alpha, \beta} \\
\rho_{\alpha, \beta} & 1
\end{array}\right)
$$

is the correlation matrix.

$$
\begin{aligned}
\alpha_{j}, \beta_{j} \mid \mu, \tau^{2}, \gamma, \zeta^{2}, \rho_{\alpha, \beta} & \sim M V N\left(\left[\begin{array}{l}
\mu \\
\gamma
\end{array}\right], S\right) \\
\mu & \sim \mathcal{N}\left(\hat{\mu}, \hat{\sigma}_{\mu}^{2}\right) \\
\tau^{2} & \sim \operatorname{Exponential}\left(1 / \hat{\tau}^{2}\right) \\
\gamma & \sim \mathcal{N}\left(\hat{\gamma}, \hat{\sigma}_{\gamma}^{2}\right) \\
\zeta^{2} & \sim \operatorname{Exponential}\left(1 / \hat{\zeta}^{2}\right) \\
R & \sim \operatorname{LKJ}(2) \\
\sigma_{j}^{2} \mid \nu, \rho^{2} & \sim \operatorname{Inverse}-\chi^{2}\left(\nu, \rho^{2}\right) \\
\nu^{2} & \sim \operatorname{Exponential}\left(1 / \hat{\nu}^{2}\right) \\
p\left(\rho^{2}\right) & \propto \frac{1}{\rho^{2}} \mathbb{1}_{(0, \infty)}\left(\rho^{2}\right)
\end{aligned}
$$

Regional average of monthly income, α_{j}

Regional ratio of income per year-of-education, β_{j}

National ratio of income per year-of-education, γ

Northern Thailand

0
$0-0$
0

We can explain the data at a national and regional level.
There are no negative values for β_{j} nor γ.

If you feel at all confused, it is only because you are paying attention.

