

A journey through Bayesian hierarchical models: Analyzing income and education in Thailand

Dr. Irving Gómez Méndez

April 2024

This work was done in collaboration with Dr. Chainarong Amornbunchornvej, NECTEC

Input:

We model a random variable using the **likelihood** $Y \sim p(Y|\theta)$. We model the uncertainty on θ using a **prior distribution** $p(\theta)$.

Output:

We update our uncertainty on θ through Bayes rule, getting the **posterior** distribution $p(\theta|\mathbf{Y})$.

We capture the total uncertainty on Y using the **posterior predictive** distribution $p(Y|\mathbf{Y})$.

Regression

No pooling model

Each region has an independent model.

Prior distribution

$$p(\boldsymbol{\theta}, \boldsymbol{\sigma}^2) \propto \prod_{j=1}^J \frac{1}{\sigma_j^2} \mathbb{1}_{\mathbb{R}}(\theta_j) \mathbb{1}_{(0,\infty)}(\sigma_j^2)$$

5

Posterior predictive distribution

Large intervals, because regions don't share information.

Intervals overlap for most of the regions.

All the parameters might be estimating the same quantity.

It is highly unlikely that the regions are independent between them.

7

Same model for an the reg $\theta_j = \theta, \, \sigma_j = \sigma, \, \text{for all } j.$

Prior distribution

$$p(\theta, \sigma^2) \propto rac{1}{\sigma^2} \mathbbm{1}_{\mathbb{R}}(\theta) \mathbbm{1}_{(0,\infty)}(\sigma^2)$$

Posterior predictive distribution

Narrow intervals.

Common mean θ can barely explain the mean of a few regions.

Overestimated σ .

Income in Northern Thailand is overestimated. Income in Eastern Thailand is underestimated.

Hierarchical model with common within-cluster variance

Likelihood

$$Y_{ij}|\theta_j, \sigma^2 \sim \mathcal{N}(\theta_j, \sigma^2)$$

Prior distributions $\theta_j | \mu, \tau^2 \sim \mathcal{N}(\mu, \tau^2)$ $p(\mu) \propto \mathbbm{1}_{\mathbb{R}}(\mu)$ $p(\tau^2) \propto \mathbbm{1}_{(0,\infty)}(\tau^2)$ $p(\sigma^2) \propto \frac{1}{\sigma^2} \mathbbm{1}_{(0,\infty)}(\sigma^2)$

Posterior predictive distribution

Less uncertainty than independent models.

Better performance than complete pooling model.

The common variance is not overestimated.

A common variance cannot explain the observed variability.

The model is not going to do it for us! That's the hatch!

Hierarchical model varying within-cluster variance

 $Y_{ij}|\theta_j, \sigma^2 \sim \mathcal{N}(\theta_j, \sigma^2)$ $\theta_i | \mu, \tau^2 \sim \mathcal{N}(\mu, \tau^2)$ $p(\mu) \propto \mathbb{1}_{\mathbb{R}}(\mu)$ $p(\tau^2) \propto \mathbb{1}_{(0,\infty)}(\tau^2)$ $\sigma_i^2 | \nu, \rho^2 \sim \text{Inverse-} \chi^2(\nu, \rho^2)$ $p(\rho^2) \propto rac{1}{
ho^2} \mathbbm{1}_{(0,\infty)}(
ho^2)$ $\nu \sim ?$

One cluster	Two clusters						R	egr	essi	on
		•	•	٠	٠	٠	٠	٠	•	•
			•	•	٠	٠	٠	٠	•	•
UNIVERSITY				•	٠	٠	٠	٠	٠	•
					•	٠	٠	٠	٠	•

It remains challenging to propose priors for the degrees of freedom of a distribution.

We consider three approaches:

• Set ν equal to some estimated value $\hat{\nu}$. For example, using the method of moments

$$\hat{\nu} = \frac{2(E_{s^2})^2}{V_{s^2}} + 4.$$

▶ Use a vague prior, for example p(ν) ∝ ν^{-h} 1 (0,∞)(ν), for some h ∈ [0,∞).
 ▶ Use a regularizing prior, for example ν ~ Exponential(1/ν̂).

ne cluster Two clusters						R	legr	essi	on
	•	•	•	•	•	•	•	•	•
Cons:				•	•	•	•	•	•
 Set ν = ν̂: Eliminates the uncertainty on ν. Improper distribution: Does not give guarantee for the 	e existence	of	'th	ne		•	•	•	•
posterior distribution.									•

▶ Regularizing prior: Which distribution to use?

Pros:

- ▶ Set $\nu = \hat{\nu}$: We don't have to worry about the posterior.
- ▶ Improper distribution: There's nothing to estimate.
- Regularizing prior: Maintain the uncertainty and guarantee the existence of the posterior distribution.

WINNE WINNER WITH TWO NON-NESTED Clusters: income per region and education level

One cluster	Two clusters					R	egr	essi	on
	•	•	•	•	•	•	•	•	•
			•	•	•	•	•	•	•

We define the next rule:

Education	Years of education	Education level
Uneducated	0	
Kindergarten	0	Low
Pre-elementary school	3	LOW
Elementary school	6	
Junior high school	9	
Senior high school	12	Mid
Vocational degree	14	
Bachelor degree	16	Ujch
Post-graduate	19	mgn

One cluster	Two clusters R							Regression					
		•	•	•	•	•	•	•	•	•			
				•	•	•	•	•	•	•			
We define the next rule:						•	•	•	•	•			
Education	Years of education E	ducation	le	ve	1			•	•	•			

Education	Years of education	Education level
Uneducated	0	
Kindergarten	0	Low
Pre-elementary school 3		LOW
Elementary school	6	
Junior high school	9	
Senior high school	12	Mid
Vocational degree	14	
Bachelor degree	16	Uigh
Post-graduate	19	Ingn

Let be X_{ij} the average years of formal education in the province *i* belonging to region *j*.

$$Y_{ij}|\alpha,\beta,\sigma^2 \sim \mathcal{N}(\alpha+\beta(X_{ij}-\bar{X}_{..}),\sigma^2)$$
$$p(\alpha,\beta,\sigma^2) \propto \frac{1}{\sigma^2} \mathbb{1}_{\mathbb{R}}(\alpha)\mathbb{1}_{\mathbb{R}}(\beta)\mathbb{1}_{(0,\infty)}(\sigma^2)$$

Suitable to explain national behavior.

We cannot say anything at a regional level.

Let be X_{ij} the average years of formal education in the province *i* belonging to region *j*.

One cluster	Two clusters						F	legr	essi	on
		٠	٠	٠	٠	•	٠	٠	٠	•
			•	•	•	•	•	•	•	•
					•	•	•	•	•	•
						٠	٠	٠	٠	•
							٠	٠	٠	•
								•	٠	•
										•
Large credible inter	vals.									•

The intervals include negative values for β_i , which seems implausible.

Pretending that each region is independent for the others seems unrealistic.

One cluster	Two clusters	Regression
	Bayesian hierarchical regression ••• varying intercepts	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
μ τ^2 α_j $(\mu$	$Y_{ij} \alpha_j, \beta_j, \sigma_j^2 \sim \mathcal{N}(\alpha_j + \beta_j (X_{ij} - \bar{X}_{.j}))$ $\alpha_j \mu, \tau^2 \sim \mathcal{N}(\mu, \tau^2))$ $\mu \sim \mathcal{N}(\hat{\mu}, \hat{\sigma}_{\mu}^2)$	$(),\sigma_{j}^{2})^{\bullet}$
$\alpha_j + \beta(X_{ij} - X_{ij})$	$ \begin{array}{c} \tau^2 \sim Exponential(1/\hat{\tau}^2) \\ p(\beta) \propto \mathbbm{1}_{\mathbb{R}}(\beta) \\ \sigma_j^2 \nu, \rho^2 \sim Inverse-\chi^2(\nu, \rho^2) \\ \nu^2 \sim Exponential(1/\hat{\nu}^2) \\ p(\rho^2) \propto \frac{1}{\rho^2} \mathbbm{1}_{(0,\infty)}(\rho^2) \end{array} $	
		20

One cluster	Two clusters						F	legr	essi	on
		•	•	٠	٠	•	٠	•	٠	•
			•	•	٠	٠	٠	٠	•	•
				•	•	•			•	•
					•	٠	٠	٠	٠	•
						٠	٠	٠	٠	•
							٠	٠		•
								٠	٠	•
The distribution of β includes nega	tive values.								•	•
										•

Different slopes could be preferred.

One cluster Two clusters Regression

 α_j and β_j will follow a multivariate normal distribution with mean (μ, γ) • • • • • • • • •

$$S = egin{pmatrix} au^2 & au\zeta
ho_{lpha,eta} \ au\zeta
ho_{lpha,eta} & extstyle ^2 \end{pmatrix},$$

which can be written as

$$S = \begin{pmatrix} \tau & 0\\ 0 & \zeta \end{pmatrix} R \begin{pmatrix} \tau & 0\\ 0 & \zeta \end{pmatrix}$$
$$R = \begin{pmatrix} 1 & \rho_{\alpha,\beta}\\ \rho_{\alpha,\beta} & 1 \end{pmatrix}$$

where

is the correlation matrix.

_

				 	•		•	•
$Y_{ij} \alpha_j, \beta_j, \sigma_j \sim Laplace(\alpha_j + \beta_j(X_{ij}))$	$-\bar{X}_{\cdot j}),$	$\sigma_j)$	• •		•	•	•	•
$\alpha_{j}, \beta_{j} \mu, \tau^{2}, \gamma, \zeta^{2}, \rho_{\alpha, \beta} \sim MVN\left(\begin{bmatrix} \mu \\ \gamma \end{bmatrix}, S \right)$					•	•	•	•
$\mu \sim \mathcal{N}(\hat{\mu}, \hat{\sigma}_{\mu}^2)$						•	•	•
$ au^2 \sim Exponential(1/\hat{ au}^2)$								•
$\gamma \sim \mathcal{N}(\hat{\gamma}, \hat{\sigma}_{\gamma}^2)$								
$\zeta^2 \sim Exponential(1/\hat{\zeta}^2)$								
$R \sim LKJ(2)$								
$\sigma_j^2 u, ho^2 \sim {\sf Inverse-} \chi^2(u, ho^2)$								
$ u^2 \sim Exponential(1/\hat{ u}^2)$								
$p(ho^2) \propto rac{1}{ ho^2} \mathbbm{1}_{(0,\infty)}(ho^2)$							4	41

One cluster	Two clusters					F	legr	essi	on
		•	٠	•	٠	٠	٠	٠	•
		٠	٠	٠	٠	٠	٠	٠	•
UNIVERSITY			٠	٠	٠	٠	٠	٠	•
				•	٠	٠	٠	٠	•
					٠	٠	٠	٠	•
						٠	٠		•
							٠		•
We can explain th	e data at a national and regional level.								•
									•

There are no negative values for β_j nor γ .

If you feel at all confused, it is only because you are paying attention.

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •