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Outline of the Talk

1. Introduction, Motivation and Goals
2. Data-Missing Mechanisms
3. Random Forests

I Introduction
I Simulation Study of an RF Algorithm with Missing Entries
I Consistency of an RF Algorithm with Missing Entries

4. Autoencoders with Missing Values
I Autoencoders
I Denoising Autoencoders
I Variational Inference
I Variational Autoencoders (VAEs)
I VAEs with missing Data
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With the progress in data generation, new techniques and
algorithms from the field of machine learning have been
developed as powerful tools for the analysis of complex
and large data.

However, most of these techniques have been developed
considering that all the variables are available.
Although, in practice it is common to deal with data sets
that have missing values.

The present work might be divided in two parts:
1. The first part is dedicated to the estimation of the

regression function through random forests when there
are missing entries.

2. The second part focuses on the reconstruction of the
original observations through the use of autoencoders.
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The firs part is divided in three sections for this talk.
I Introduction of the random forest algorithm, explaining

the problems face by the original method when there are
missing entries, and introducing a new algorithm to
deal with these problems.

I Development of a simulation study comparing the
proposed approach with other algorithms to handle missing
values using random forests.

I Prove of the consistency of the proposal when the
introduction of missing values is made completely at
random and when the regression function can be expressed
as an additive model.
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The second part is divided in 4 sections for this talk.
I Introduction to autoencoders and denoising autoencoders

to reconstruct missing data.
I Introduction to variational inference.
I Introduction to variational autoencoders.
I Use of variational autoencoders for missing data, trained

with a new loss function (EMMELBO).
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Data Set with Missing Entries
Ideally the matrix of observations is complete, although in
practice there can be blank spaces.

X(1) X(2) X(3) X(4) Y X(1) X(2) X(3) X(4) Y

In its more generality, those blank spaces represent values for
which we have no information, although some context like
censorship are especial cases of missing information.
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Mechanisms of Missingness1

I Missing Completely at Random (MCAR) A variable
is missing completely at random if the probability of
missingness does not depend on either, the observed
values non the missing values.

I Missing at Random (MAR) A variable is missing at
random if the probability of missingness depends on
observed variables but does not depend on missing
values.

I Not Missing at Random (NMAR) If the probability
of missingness depends on missing values, it is called
not missing at random.

1Donald B Rubin. “Inference and missing data”. In: Biometrika 63.3
(1976), pp. 581–592.
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Regression Framework

In our framework, we assume to have access to a training set
Dn = (Xi, Yi)i=1,...,n where the response variables Yi are
real-valued and the input variables Xi belong to some space X .
In most applications the space X is a compact portion of
a p dimensional space. Hence, we assume that X = [0, 1]p.
The aim is to estimate the regression function

m(·) ≡ E[Y |X = ·]
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Estimation of the Regression Function
We can estimate m dividing (somehow) X in disjoint regions
and predicting with a constant in each region.
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Recursive Trees / Creation of Disjoint Regions

X(1)

X(2) z1
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X(2)

z1

z2

..
. .
.

X(2) ≥ z1

X(1) ≥ z2

X(1)

X(2) z1
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X(2) ≥ z1

X(1) ≥ z2 X(1) ≥ z3
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CART-split Criterion
Let d = (h, z) be a cut in direction h at position z,

Ln(A, d) = 1
N(A)

n∑
i=1

(
Yi − ȲA

)2
1Xi∈A

− 1
Nn(A)

n∑
i=1

(
Yi − ȲAL

1X(h)
i <z

− ȲAR
1X(h)

i ≥z

)2
1Xi∈A

...

=N(AL)N(AR)
N(A)N(A)

(
ȲAL
− ȲAR

)2
.

The CART-criterion attempts to minimize the variance
inside the cells, making the cells as distinct as possible (in
terms of the value of Y ) but maintaining the balance in the
number of points in the cells.
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Other Criteria
Other criteria to construct the trees minimizes different
impurity measures:

I Shannon entropy (ID3 and C4.5)
I Missclassfication error
I Gini index
I Hypothesis test (conditional trees)

We are going to focus on the CART-criterion.

We construct the cells maximizing the CART criterion over all
possible cuts in cell A,

d̂ = (ĥ, ẑ) ∈ arg max
d∈CA

Ln(A, d),

where CA is the set of all possible cuts in node A.
13
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Random Forest
A random forest is an ensemble of trees, i.e.

mM,n(x; Θ1, . . . ,ΘM ) = 1
M

M∑
k=1

mn(x; Θk).

We expect the predictor:
I To be more stable
I To have less variance

Conditions:
I Independent or non-correlated trees

However the trees are not independent because they use the
same data Dn.
Solution:

I Introduce sources of randomness
14
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Parameters
We add two sources of randomness in each tree:

1. We select randomly an (with or without replacement)
observations prior to the construction of each tree.

2. We select randomly mtry candidate directions to
perform the cut.

These are parameters of the random forest together with:
1. M , which is the number of trees. It is only restricted by

computational power.
2. nodesize, which is the maximum number of points in

a final cell.
3. We have added qn, which is the minimum number of

points in a final cells.
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Data Set with Missing Entries
Ideally the matrix of observations is complete, although in
practice there can be blank spaces.

X(1) X(2) X(3) X(4) Y X(1) X(2) X(3) X(4) Y

We want to estimate m when there are missing entries in
the training data set Dn, we assume that there are no
missing values for the target Y .
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The CART-Criterion Cannot be Computed

X(1)

X(2)

.X2

X1

A

AL AR

Ln(A, d) = 1
N(A)

n∑
i=1

(
Yi − ȲA

)2
1Xi∈A

− 1
N(A)

n∑
i=1

(
Yi − ȲAL

1X(h)
i <z

− ȲAR
1X(h)

i ≥z

)2
1Xi∈A

The red parts in the CART criterion cannot be computed.
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Assign the Observations
We can solve this problem assigning the observations with
missing values to left or right given some cut that splits the
cell.

A

X̂1,in.
X̂3,in.X̂4,in.

X̂7,in.

X̂2,in

X̂5,in

X̂6,in

AL AR

X̂1,out.
X̂3,out.X̂4,out.

X̂7,out.

X̂2,out

X̂5,out

X̂6,out
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Notation
Define the indicator of missing value as

M(h) =
{

1 if X(h) is missing
0 otherwise , 1 ≤ h ≤ p.

Let be
I N̂

(h)
miss(A) the number of observations assigned to cell A

whose variable X(h) is missing.
I W(h)

A = {0, 1}N̂
(h)
miss(A) the collection of binary vectors w.

I wk = 1 means that the observation (Xjk , Yjk) is assigned
to the left.

I wk = 0 means that the observation (Xjk , Yjk) is assigned
to the right.
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Example of Assignation
In this example we assign X2 to the left, X5 to the right and
X6 to the left. So the assigantion is represented with the vector
w = (1, 0, 1).

AL AR

X̂1,out.
X̂3,out.X̂4,out.

X̂7,out.

X̂2,out

X̂5,out

X̂6,out
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CART-Criterion with Assignation
With these assignations, we can compute the CART-criterion.

Ln (A, d,w) = 1
N̂(A)

∑n
i=1

(
Yi − ŶA

)2
1 X̂i,in∈A

− 1
N̂(A)

∑n
i=1

(
Yi − ŶAL

)2
1 X̂i,in∈A, a(h)≤X̂(h)

i,out<z

− 1
N̂(A)

∑n
i=1

(
Yi − ŶAR

)2
1 X̂i,in∈A, z≤X̂(h)

i,out≤b(h)

X(1)

X(2)

.
.

. .

A

AL AR
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Best Cut and Assignation

For a cell A and an input imputation vector X̂in, the
algorithm chooses a cut and assignation (d̂, ŵ) by
maximizing Ln (A, d,w) over CA ×W(h)

A ,

(d̂, ŵ) ∈ arg max
d∈CA

w∈W(h)
A

Ln (A, d,w) .

Finally, the “imputed” intervals are updated, symbolized
by X̂(̂h)

i,in ← X̂(̂h)
i,out.

Different to previous techniques, this approach
optimizes over the assignations.
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Simulation Framework
A simulation was conducted to inspect the behavior of the
proposed approach, in a benchmark study. Comparing the
proposal against 6 different methods to handle missing
values through random forests.
We consider the regression function “friedman1”:

m(x) = 10 sin
(
πx(1)x(2)

)
+ 20

(
x(3) − 0.5

)2
+ 10x(4) + 5x(5)

And 7 data-missing mechanisms, similar to those
introduced by Rieger, Hothorn, and Strobl.2

2Anna Rieger, Torsten Hothorn, and Carolin Strobl. “Random forests
with missing values in the covariates”. In: Technical report (2010). url:
http://epub.ub.uni-muenchen.de/11481.

25

http://epub.ub.uni-muenchen.de/11481


Introduction Missingness
Simulation
Consistency

Random Forests
Denoising AEs
Variational Inference
VAEs
VAEs with Missing

Autoencoders Conclusions

Data Sets

Training data sets
I We create 100 training data sets.
I We simulate 200 observations from X ∼ U [0, 1]5.
I Missing values are introduced in X(1), X(3) and X(4).

Testing data set
I We create 1 data set.
I We simulate 2000 observations from X ∼ U [0, 1]5.
I All observations are complete.
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Random Forests

I For each training data set and each mechanism of
missingness (including complete data) we create a random
forest.

I Each forest is built with the parameters:

I M = 50 trees.
I mtry = 1 variable selected at random to perform the cut.
I an = 127 observations selected at random and without

replacement for each tree.
I nodesize = 5, maximum number of observations in the

final nodes.
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Percentage of Missingness

Missing values are introduced in the training data sets in X(1),
X(3) and X(4) accordingly to the following percentages.

Determinant Variable Missing Variable % Missing Data

X(2), Y X(1) 20%

X(5), Y
X(3) 10%

X(4) 20%
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Changing the Percentage of Missingness
I MissForest and our approach generate the best estimators

in terms MSE.
I Our method requires the construction of a single random

forest.
I It does not require the computation of the proximity

matrix.
Extending the study, we change the percentage of
missingness for X(4), without changing the percentage of the
other variables.

X(1) X(3) X(4)

20% 10% 5%, 10%, 20%, 40%, 60%, 80%, 90%, 95%
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Conclusions

We observe that:
I When the percentage of missingness is less than 40%

most of the methods present similar MSE and bias.
I The differences between the approach are clear when

the percentage of missingness is larger than 60%.
I For extremely large percentage of missing values, the

proposal surpass all the other methods.
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Importance of Consistency

The first and weakest property an estimate should have is
that, as the sample size grows, it should converge to the
estimated quantity, i.e., the error of the estimate should
converge to zero for a sample size tending to infinity. Estimates
which have this property are called consistent.3

We show that our proposed method generates consistent
estimators under some conditions.

3László Györfi et al. A distribution-free theory of nonparametric
regression. Springer Science & Business Media, 2002.
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Consistency in Probability / Hypothesis
A sequence of regression function estimates (mn)n is called
consistent in probability for a certain distribution of (X, Y )
if, for all ξ, ρ > 0 there exists N ∈ N?, such that for all n ≥ N

P [|mn(X)−m(X)| ≤ ξ] ≥ 1− ρ

Hypothesis (1)
The response variable Y is of the form

Y =
p∑
j=1

mj(X(j)) + ε

where X is uniformly distributed over [0, 1]p, ε is an
independent Gaussian centered noise with finite variance σ2 > 0
and each component mj is continuous.
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Hypothesis / Theorem
Hypothesis (2)
The random variables X(h)

i are missing accordingly to an
MCAR mechanism. The probability of missingness
p

(h)
n = P

[
M(h) = 1

]
only depends on the size n of the sample

Dn and limn→∞ p
(h)
n = c(h) where 0 < c(h) < 1 is constant for all

h ∈ {1, . . . , p}.

Assume that Hypothesis 1 and 2 hold. Then, under the
condition qn →∞, the random forest estimator with miss-
ing values is consistent in probability.

Theorem 1
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Sketch of the Proof
We define, for any cell A, the variation of m within A as

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|

1. Show that asymptotically the regression function has
no variation on the final cells. Thus the regression
function can be properly approximated by a function
constant by pieces (Proposition 1).

2. Show that if the theoretical CART-criterion L?

satisfies

P
[
L?
(
As(n), d

?
s(n), w

?
s(n)

)
≤ ξ

]
≥ 1− ρ

then ∆(m,As(n)(x))→ 0 almost surely (Lemma 1).
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3. Show that the empirical CART-criterion Ln satisfies

P
[
Ln
(
As(n), d̂s(n), ŵs(n)

)
≤ ξ

]
≥ 1− ρ

(Lemma 2).
4. By Law of Large Numbers, and Proposition 1. Show that

there exists a consistent estimator m′n, where

m′n(X,Θ) = 1
N(As(n)(X,Θ))

n∑
i=1

Yi1Xi∈As(n)(X,Θ).

5. Show that our estimator is asymptotically equivalent
to m′n.
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Relevance of Hypothesis 1

If m is non-additive then we could have that the CART
criterion equals zero even when m is not constant. For example,
consider the function m(x(1),x(2)) = x(1) + x(2) − 2x(1)x(2), the
cell A = [0, 1]2 and a cut d = (1, z) (z ∈ (0, 1)), then

µAL
= 1
z

∫ z

0

∫ 1

0
(x(1) + x(2) − 2x(1)x(2))dx(2)dx(1)

= 1
z

∫ z

0
(x(1) + 1

2 − x(1))dx(1) = 1
2

Note that µAL
does not depend on z, similarly we can show

that µAR
= 1/2 and therefore L? = 0 for all cuts even

when m is not constant.
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The conditions over the Gaussian errors and the
uniformity of X are more technical requirements,
changes on these conditions, like sub-Gaussian errors or
distributions with support in [0, 1]p for X, would require to
adapt the technical parts of the proof with little relevance
(Lemma 1).

The conditions on the MCAR mechanism and
p

(h)
n → c(h) 6= 1 are used extensively to ensure that we have

enough number of observations in the final cells, and
that the balance in the the number of points is maintained
(Lemma 2).
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Imputing with Autoencoders

I We impute the missing values using autoencoders.
I We derived a loss function to trained variational

autoencoders (VAEs) with missing data, that we
have called EMMELBO.

Autoencoders are neural networks:
I which generate a non-linear representation of an

observation in an smaller dimension (the encoder portion).
I which recover the original observation from the latent

representation (the decoder portion).
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Dimensionality Reduction / Encoder and Decoder
Framework

We want to find a space of smaller dimension than the input
space to represent the data.

I Encoder: produces the new representation from the “old
features”, e ∈ E .

I Decoder: recover the input from the small.dimensional
representation, d ∈ D.

We want to to find the best encoder/decoder pair
among a given family, i.e. we want to minimize a loss
function

(e?, d?) ∈ arg min
(e,d)∈E×D

L(X, d(e(X)))
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Autoencoder
In autoendores the encoder and the decoder are E and D are
families of neural networks.

encoder
Z = e(X)

decoder
Y = d(Z)

X

Z

Y X̂ = f(Y)

(e?, d?) ∈ arg min
(e,d)∈E×D

EDnL(x, d(e(x)))
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If xj follows a Bernoulli distribution we could choose L(xj , yj)
as the negative of the log-likelihood

L(x,y) = 1
p

p∑
j=1

L(xj , yj) = 1
p

p∑
j=1
−xj log(yj)−(1−xj) log(1−yj)

encoder
z = e(x)

decoder
y = d(z)

x

784
392, relu

196, relu

z

k,
linear 196, relu

392, relu

y

784,
sigmoid

x̂j = 1 yj≥0.5

784

ReLu: f(x) = max{0,wT x + b}, sigmoid: f(x) = 1
1+e(−wT x+b) , linear:

f(x) = wT x + b.
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Autoencoder vs PCA
The autoencoder is able to reconstruct the images, while PCA
cannot do it.

Figure: Reconstruction using our autoencoder when the dimension of
the latent space is k = 2.

Figure: Reconstruction using the first 2 principal components.
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Latent Representation, AE vs PCA
The autoencoder learn the important features of the
images to distinguish between the digits that they represent,
while PCA cannot learn these features.

Figure: Latent space using the
autoencoder.

Figure: Induced space by the
first two principal components.
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Denoising Autoencoders (DAEs)
I A denoising autoencoder is an autoencoder that receives a

corrupted data point as its input and is trained to predict
the original, uncorrupted data point as its output.

I A denoising autoencoder minimizes

L(x, d(e(x̃)))

where x̃ is a copy of x that has been corrupted.

encoder
z = e(x̃)

decoder
y = d(z)

corruption
p(x̃|x)

x̃x

z

y x̂ = f(y)
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Use of DAEs
I Autoencoders encourage d ◦ e to be merely the identity

function if they have the capacity to do so.
I Denoising autoencoders (DAEs) must undo the

corruption rather than simply copy their input.
I DAEs were first introduced by Vincent et al.4 as a

robust procedure to get a good representation.
I DAEs make possible to reconstruct from partial

observation.
I The corruption process p(x̃|x,m) represents the

conditional distribution over corrupted samples given the
original data sample and the missing pattern.

4Pascal Vincent et al. “Extracting and composing robust features with
denoising autoencoders”. In: Proceedings of the 25th international
conference on Machine learning. 2008, pp. 1096–1103.
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Corruption Process / Rough Imputation

encoder
z = e(x)

decoder
y = d(z)

corruption
p(x̃|x,m)

x̃

x

m

z

y x̂ = f(y)

x̃j |x,m =


1 if xj = 1 and mj = 0
0 if xj = 0 and mj = 0
0.5 if mj = 1
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Reconstruction of Images Using DAEs

Figure: Reconstruction using our DAE when the dimension of the
latent space is k = 2 and 157 pixels have missing values.

Figure: Reconstruction using our DAE when the dimension of the
latent space is k = 98 and 157 pixels have missing values.
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Bayesian Framework

I p(z) is the prior density for the latent variables.
I p(x|z) is the likelihood of the observations.
I We want to compute the posterior density p(z|x).

p(z|x) = p(x|z)p(z)
p(x)

The denominator is the density of the observations, also
called the evidence.

p(x) =
∫
p(x, z)dz =

∫
p(x|z)p(z)dz

It is quite common that this integral is intractable.
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Variational Inference

The idea of variational inference is to propose a family Q of
densities over the latent variable and then find the member of
the family that minimizes the Kullback-Leibler (KL)
divergence to the exact posterior,

q? ∈ arg min
q∈Q

DKL(q(z|x)||p(z|x))

However, it cannot be computed since it requires to calculate
the evidence log p(x).
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ELBO
Fortunately, we can derive an equivalent expression which
enables us to solve the optimization problem. This expression is
known as the Evidence Lower Bound (ELBO).

ELBO(q) = Ez∼q [log p(x, z)]− Ez∼q [log q(z|x)]

q? ∈ arg max
q∈Q

ELBO(q)

We can rearrange ELBO(q) to get a more convenient form

ELBO(q) = Ez∼q [log p(x|z)]−DKL(q(z|x)||p(z))

This form looks like the well-known trade-off between the
likelihood and the prior.
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Variational Autoencoders (VAEs)

encoder
q(z|x)

decoder
p(x|z)

x z x

The ELBO is the core and loss function of a VAE since q(z|x) is
encoding x into z and p(x|z) is decoding it to reconstruct x.

I z ∼ Nk(0, I).

I xj |z
iid∼ Ber(dj(z)), d = (d1, . . . , dp) ∈ D.

I q(z|x) ≡ Nk(µ(x), σ(x)).
I σ(x) = diag(σ1(x), . . . , σk(x)) ∈ S.
I µ(x) = (µ1(x), . . . , µk(x)) ∈M.
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Optimization Problem

Thus, maximizing the ELBO over q is equivalent to

(d?, µ?, σ?) ∈

arg max
(d,µ,σ)∈D×M×S

Ez∼q

 p∑
j=1

xj log(dj(z)) + (1− xj) log(1− dj(z))


− 1

2

k∑
κ=1

[
σκ(x) + µ2

κ(x)− log σκ(x)
]

Note that we need to calculate an expected value with
z ∼ q.
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encoder
q(z|x) ≡ N (µ(x), σ(x))

decoder
p(x|z)

x
µ

µ

σ

σ

z ∼ q(z|x)

y x̂ = f(y)

There is a significant problem. We need to back-propagate
the error through a layer that samples z from q. However
this sample procedure is not differentiable, and this
autoencoder cannot be learned by back-propagation.
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Reparametrization Trick
The solution, called the “reparametrization trick”, is to
first sample ε ∼ Nk(0, I) and then compute z = µ(x) + σ(x)1/2ε.

encoder
q(z|x) ≡ Nk(µ(x), σ(x))

decoder
p(x|z)

x

µ

µ

σ

σ

ε

ε

z

y x̂ = f(y)
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Optimization Problem Using Rearametrization Trick
Finally, the optimization problem is

(d?, µ?, σ?) ∈

arg max
(d,µ,σ)∈D×M×S

Eε∼Nk(0,I)

[
p∑
j=1

xj log(dj(z)) + (1− xj) log(1− dj(z))
∣∣∣z = µ(x) + σ(x)1/2ε

]

− 1
2

k∑
κ=1

[
σκ(x) + µ2

κ(x)− log σκ(x)
]
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encoder
q(z|x) ≡ Nk(µ(x), σ(x))

decoder
p(x|z) =

∏784
j=1 dj(z)xj (1− dj(z))(1−xj)

x

784
392, relu

196, relu

µ

µ

σ

σ

k,
µ : linear

σ : exponential

ε

ε

z

k
196, relu

392, relu

y = d(z)

784,
sigmoid

x̂j = 1 yj≥0.5

784

exponential: f(x)=exp{wT x+b}.
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Figure: Reconstruction using our VAE when the dimension of the
latent space is k = 2.

Figure: Reconstruction using our VAE when the dimension of the
latent space is k = 98.
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Latent Representation, AE vs VAE
The variational autoencoder forces the latent representations
to follow (approx.) the prior distribution (normal), creating a
well-organized space (continuity and completeness).

Figure: Latent space induced
by our AE when the dimension
of the latent space is k = 2.

Figure: Latent space induced
by our VAE when the
dimension of the latent space is
k = 2. 68
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Variational Autoencoders with Missing Data
Assume that x̃ is a corrupted version of a data point x, built
with the observed part of x and its missingness pattern m.
We define the Evidence and Missingness Mechanism
Lower Bound (EMMELBO) as

EMMELBO(q(z|x̃), p(x,m|z)) =log p(x) + log p(m|x)
−DKL(q(z|x̃)||p(z|x̃))

Definition 1 EMMELBO

where (q(z|x̃), p(x,m|z)) ∈ Q× P, and Q and P are parametric
families of distributions.
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EMMELBO
We recognize on the right-hand side the terms
log p(x) + log p(m|x), the sum of the log-evidence and the
log-data-missing mechanism, thus the EMMELBO is a lower
bound of this sum.
On the other hand, it can be shown that

p(z|x̃) = p(x,m|z)p(z)
p(x,m)

From here, we can write the EMMELBO in the more
convenient form

EMMELBO(q(z|x̃), p(x,m|z)) =
Ez∼q(z|x̃) [log p(x,m|z)]−DKL(q(z|x̃)||p(z))
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VAE Architecture for Missing Data

encoder
q(z|x̃) ≡ Nk(µ(x̃), σ(x̃))

decoder
p(x,m|z)

corruption
p(x̃|x,m)

x̃

x

m

µ

µ

σ

σ

ε

ε

z

y = d(z)

w = g(z)

x̂ = f(y)

m̂ = h(w)
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Optimization Problem

The optimization problem to train a VAE with missing data is

(d?, µ?, σ?) ∈

arg max
(d,µ,σ)∈D×M×S

Ez∼q(z|x̃)

 p∑
j=1

x̃j log(dj(z)) + (1− x̃j) log(1− dj(z))


− 1

2

k∑
κ=1

[
σκ(x̃) + µ2

κ(x̃)− log σκ(x̃)
]
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Figure: Reconstruction using our VAE for missing data when the
dimension of the latent space is k = 2 and 157 pixels have missing
values.

Figure: Reconstruction using our VAE for missing data when the
dimension of the latent space is k = 98 and 157 pixels have missing
values. 74
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General Conclusions and Contributions
I We proposed a new technique based on random

forests and the CART criterion to estimate the regression
function when there are missing entries.

I We compare the proposal to other techniques based on
random forests. The proposed approach has similar MSE
to state-of-the-art methods.

I For large percentage of missing data, the proposal
surpass all the other techniques.

I We show the consistency of the estimators created
with the proposed approach.

I We derive a loss function to train variational
autoencoders with missing data.
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Sort the Target Variable
I Assume that ȲL,obs ≤ ȲR,obs.
I imiss = {1, ..., Nmiss} indexes of observations with missing

value.
I Y(1) ≤ · · · ≤ Y(Nmiss)

Maximizing the CART criterion implies assigning the lowest
values of Y to the left and the largest values of Y to the
right.

Y(1) =

Y(2) =
...

Y(Nmiss) =

80



Introduction Missingness
Simulation
Consistency

Random Forests
Denoising AEs
Variational Inference
VAEs
VAEs with Missing

Autoencoders Conclusions

Split the Sorted Vector

I Denote by w ∈ {1, ..., Nmiss + 1} the position at which the
vector of indexes imiss is split.

I Y(1), . . . , Y(w−1) area assigned to the left.
I Y(w), . . . , Y(Nmiss) area assigned to the right.

Therefore W(h)
A has a cardinality of Nmiss(A)(h) + 1.

Y(1) Y(2) Y(3) · · · Y(Nmiss−1) Y(Nmiss)w = 3:
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Concavity of CART-criterion
Furthermore, we have observed that the CART criterion is
concave as function of w.

Figure: The CART-criterion is concave as function of w.

Allowing the introduction of methods like bisection to find the
optimum assignation. 82
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Other Methods
Along with our approach, we consider 3 simple (yet popular)
methods used in practice to handle missing values:

I Removing the columns that have missing values and
constructing a random forest.

I Removing the observations with missing values and
constructing a random forest.

I Imputing the missing values with the median of the
observations in the corresponding variable and constructing
a random forest.

The parameters of the random forests are the same, except
when we eliminate observations with missing values, we have
established an = d0.632ne and n is the number of complete
observations.
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Breiman’s and Ishioka’s approaches operate through imputation
of missing values in a recursive way. First, they use the original
training data set, Dn, to fill the blank spaces in a roughly way,
this data set is used to build a random forest.

Then the proximity matrix is used to improve the imputation,
resulting in a new data set Dn,t2 . The procedure follows
iteratively. Let be KM,t`(i, j) the proximity between Xi and Xj

at time t`.
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Breiman’s Approach. If X(h) is a continuous variable,

X̂(h)
j,t`+1

=

∑
i∈i(h)

obs

KM,t`(i, j)X
(h)
i∑

i∈i(h)
obs

KM,t`(i, j)
,

` ≥ 1
j ∈ i(h)

miss

Ishioka’s Approach. If X(h) is a continuous variable,

X̂(h)
j,t`+1

=

∑
i∈neighk
i 6=j

KM,t`(i, j)X̂
(h)
i,t`∑

i∈neighk
i 6=j

KM,t`(i, j)
,

` ≥ 1
j ∈ i(h)

miss
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MissForest. This algorithm begins with a rough imputation
for the missing values. Then, for each direction X(h) a random
forests is built using all the other directions
X(1), . . . ,X(h−1),X(h+1), . . . ,X(p) and the response. Then the
missing values of X(h) are predicted with this random forests.
These steps are repeated iteratively until a stopping rule is
achieved.
Missing Incorporated in Attributes (MIA). The Missing
Incorporated in Attributes (MIA) approach consists in keeping
all the missing values together when a split is performed. Thus,
the splits with this approach assign the values according to one
of the following rules:

I {X(h) < z and M(h) = 1} versus {X(h) ≥ z}.
I {X(h) < z} versus {X(h) ≥ z and M(h) = 1}.
I {M(h) = 0} versus {M(h) = 1}.
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Data-Missing Mechanisms

I For the missing values we create 7 different mechanisms of
missingness:

I 1 Missing Completely At Random (MCAR).
I 5 Missing At Random (MAR1, MAR2, MAR3, MAR4,

Depy).
I 1 Not Missing At Random (LOG).
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I MAR1 The probability of NA is

2× rank(determinant variable)
n(n+ 1)

I MAR2 We create two groups in the determinant variable.
An observation belongs to the first group if it is bigger to
the the median, otherwise it belongs to the second group.
The probability of NA for each group is

0.9/#(obs. in 1st group) 0.1/#(obs. in 2nd group)
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I MAR3 The biggest values in the determinant variable are
NA in the missing variable.

I MAR4 The biggest and smallest values in determinant
variable are NA in the missing variable.

I DEPY Probability of NA is 0.1 if Y ≥ 13, otherwise is 0.4

I LOG

logit(P[M(h) = 1]) = −0.5 +
5∑

k=1
k 6=h

X(k)
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Decomposition of the Empirical CART Criterion
Applying elementary algebra, we can show that our CART
criterion might be written as

Ln (A, d,w) =L1,n(A, d) + L2,n (A, d,w)
+ L3,n (A, d,w) + L4,n (A, d,w)

where

L1,n(A, d) = 1
N̂(A)

n∑
i=1

(
Yi − ŶA,obs

)2
1 X̂i,in∈A,M

(h)
i =0

− 1
N̂(A)

n∑
i=1

(
Yi − ŶAL,obs

)2
1 X̂i,in∈A, a(h)≤X(h)

i ≤z,M
(h)
i =0

− 1
N̂(A)

n∑
i=1

(
Yi − ŶAR,obs

)2
1 X̂i,in∈A, z≤X(h)

i ≤b(h),M(h)
i =0
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L2,n(A, d,w) = 1
N̂(A)

n∑
i=1

(
Yi − ŶA,miss

)2
1 X̂i,in∈A,M

(h)
i =1

− 1
N̂(A)

n∑
i=1

(
Yi − ŶAL,miss

)2
1 X̂i,in∈A, a(h)≤X̂(h)

i,out≤z,M
(h)
i =1

− 1
N̂(A)

n∑
i=1

(
Yi − ŶAR,miss

)2
1 X̂i,in∈A, z≤X̂(h)

i,out≤b(h),M(h)
i =1
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L3,n(A, d,w) =N̂obs(A)
N̂(A)

(
ŶA,obs − ŶA

)2

−
N̂

(h)
obs (AL)
N̂(A)

(
ŶAL,obs − ŶAL

)2

−
N̂

(h)
obs (AR)
N̂(A)

(
ŶAR,obs − ŶAR

)2
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L4,n(A, d,w) =N̂miss(A)
N̂(A)

(
ŶA,miss − ŶA

)2

− N̂
(h)
miss(AL)
N̂(A)

(
ŶAL,miss − ŶAL

)2

− N̂
(h)
miss(AR)
N̂(A)

(
ŶAR,miss − ŶAR

)2
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Decomposition of the Theoretical CART Criterion

Analogously, the Theoretical CART criterion can be written as

L?(A, d,w) =L?1(A, d) + L?2(A, d,w)
+ L?3(A, d,w) + L?4(A, d,w)

I L?1 (resp. L?2) measures the change of variance of the
points where the split variable is observed (missing).

I L?3 (resp. L?4) measures the change of the squared bias of
the points where the split variable is observed (missing).
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Bias-Variance Trade-Off

This leads to the well-known bias-variance trade-off.
I When L?3 or L?4 are different from zero, the data-missing

mechanism is introducing a source of bias. (Conjecture).
I We have observed in our simulations that the MCAR

mechanism seems to not introduce any bias.
I We expect that L3,n and L4,n would take values near zero.

Our simulation shows results that sustain these
observations.
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Figure: Ln, L1,n, L2,n, L3,n and L4,n in the cells of a tree in a random
forest where an MCAR mechanism was present in the data set.
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Figure: Ln, L1,n, L2,n, L3,n

and L4,n boxplots for a tree in
a random forest where an
MCAR mechanism was present
in the data set.

Figure: Ln, L1,n, L2,n, L3,n

and L4,n boxplots for a random
forest an MCAR mechanism
was present in the data set,
each point represents the mean
value of a tree.
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Figure: Ln, L1,n, L2,n, L3,n and L4,n boxplots when an MCAR
mechanism was present in the data set, each point represents the
mean value of a random forest.
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Proof of Theorem 1

Denote by As(n)(X,Θ) the cell of the tree built with the
random variable Θ that contains X, where s(n) is the number
of cuts necessary to construct the cell.

Let be

mn(X,Θ) = 1
N̂(As(n)(X,Θ))

n∑
i=1

Yi1 X̂i∈As(n)(X,Θ)

our tree estimator.

102



Introduction Missingness
Simulation
Consistency

Random Forests
Denoising AEs
Variational Inference
VAEs
VAEs with Missing

Autoencoders Conclusions

Define another tree estimator that takes our partition of the
input space X but considers the values Xi for the prediction,

m′n(X,Θ) = 1
N(As(n)(X,Θ))

n∑
i=1

Yi1Xi∈As(n)(X,Θ)

Note that m′n(X) =
∑n
i=1Wn,i(X,Θ)Yi, where

Wn,i(X,Θ) = 1
N(As(n)(X,Θ))1Xi∈As(n)(X,Θ)
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E[m′n(X)−m(X)]2 = E
[
n∑
i=1

Wn,i(X)Yi −m(X)
]2

≤ 2E
[
n∑
i=1

Wn,i(X)(Yi −m(Xi))
]2

+ 2E
[
n∑
i=1

Wn,i(X)(m(Xi)−m(X))
]2

= 2In + 2Jn
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In = E
[
n∑
i=1

Wn,i(X)(Yi −m(Xi))
]2

=
n∑
i=1

n∑
j=1

E [Wn,i(X)Wn,j(X)(Yi −m(Xi))(Yj −m(Xj))]

= E
[
n∑
i=1

Wn,i(X)2ε2
i

]
Note that
n∑
i=1

Wn,i(X)2ε2
i = 1

N(As(n)(X))

(
1

N(As(n)(X))

n∑
i=1

ε2
i1Xi∈As(n)(X)

)

≤ 1
qn

(
1

N(As(n)(X))

n∑
i=1

ε2
i1Xi∈As(n)(X)

)
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For any α > 0 there exists N ∈ N? such that for all n ≥ N

1
N(As(n)(X))

n∑
i=1

ε2
i1Xi∈As(n)(X) ≤ σ2 + α

Hence, because N(As(n)(X)) ≥ qn and qn →∞ by assumption,
we conclude that for n sufficiently large In ≤ E

[
1
qn

(σ2 + α)
]
≤ ξ

for any ξ > 0.
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Applying Cauchy-Schwartz to Jn, we have

Jn ≤ E
[
n∑
i=1

Wn,i(X)(m(Xi)−m(X))2
1Xi∈As(n)(X)

]

Note that (m(Xi)−m(X))2
1Xi∈As(n)(X) ≤ ∆(m,As(n)(X))2,

hence
Jn ≤ E

[
∆(m,As(n)(X))2

]
Suppose that ∆(m,As(n)(X,Θ))→ 0, almost surely.

Since ∆(m,As(n)(X,Θ)) ≤ ∆(m, [0, 1]p) <∞, we can use the
dominated convergence theorem. Thus,

Jn ≤ E
[
∆(m,As(n)(X,Θ))2

]
→ 0
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Assume that H1 and H2 hold. Then,

∆(m,As(n)(X,Θ))→ 0 almost surely.

Proposition 1
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Proof of Proposition 1
Let WY be the collection of functions from Y to [0, 1], we define
the “imputed” random variable as

X̂ = (X̂(1), . . . , X̂(p))

where

X̂(h)|X̂ ∈ A =
{

X(h)|X ∈ A if M(h) = 0
B(h) if M(h) = 1

and

B(h) =


(
a(h), z

)
if Ber(w(Y )) = 1(

z, b(h)
)

if Ber(w(Y )) = 0
, w ∈ WY

That is, w(Y ) is the probability that X̂(h) < z conditional to
M(h) = 1 and Y .
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We define the theoretical CART over a cut (h, z) and a function
w ∈ WY as

L?(h, z, w) =V[Y |X̂ ∈ A]− V[Y |X̂(h) < z, X̂ ∈ A]P[X̂(h) < z|X̂ ∈ A]
− V[Y |X̂(h) ≥ z, X̂ ∈ A]P[X̂(h) ≥ z|X̂ ∈ A]

The best cut and assignation (h?, z?, w?) is selected by
maximizing L? (h, z, w) over Mtry, CA and WY , that is

(h?, z?, w?) ∈ arg max
h∈Mtry

(h,z)∈CA
w∈WY

L? (h, z, w)
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Assume that H1 and H2 are satisfied and fix x ∈ [0, 1]p.
Then for all ρ, ξ > 0, there exists N ∈ N? such that, for all
n ≥ N if P

[
L?
(
As(n), d

?
s(n), w

?
s(n)

)
≤ ξ

]
≥ 1− ρ, then

∆(m,As(n)(x))→ 0 almost surely.

Lemma 1
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Assume that H1 and H2 are satisfied and fix x ∈ [0, 1]p .
Then for all ρ, ξ > 0, there exists N ∈ N? such that, for all
n ≥ N

P
[
Ln
(
As(n), d̂s(n), ŵs(n)

)
≤ ξ

]
≥ 1− ρ

Lemma 2
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We prove the almost sure convergence of ∆(m,As(n)) to 0 by
showing that the theoretical CART criterion of the sequence
(As(n))n tends to 0 and use of Lemmas 1 and 2. Note that

L?
(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)
= L?

(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d

?
s(n), w

?
s(n)

)
+ Ln

(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)
≤ L?

(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d

?
s(n), w

?
s(n)

)
Where the last inequality comes from noting that
Ln
(
As(n), d̂s(n), ŵs(n)

)
≥ Ln

(
As(n), d, w

)
for all cut d ∈ CA and

assignation w ∈ WA.
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1. For a cell A, fix a cut (h, z) ∈ CA and consider a function
w ∈ WY .

2. Create a random vector W of dimension
N̂miss(A) = Card(i(h)

A,miss)

Wk = Ber(w(Yjk))

for jk ∈ i(h)
A,miss.

3. Assign the observations X̂jk according to the random
vector W .

4. Evaluate the empirical CART criterion Ln considering
these assignations.
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By strong law of large numbers

L?
(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d

?
s(n), w

?
s(n)

)
→ 0

almost surely.

Fix ξ, ρ > 0, for n sufficiently large, we have

L?
(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)
≤ ξ

almost surely.
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On the other hand, by Lemma 2, there exists N1 such that for
all n ≥ N1, with probability at least 1− ρ

Ln
(
As(n), d̂s(n), ŵs(n)

)
≤ Cξ

Hence, with the same probability,

L?
(
As(n), d

?
s(n), w

?
s(n)

)
≤ ξ

And by Lemma 1, we conclude that

∆(m,As(n)(X,Θ)) a.s.−−→ 0
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Sketch of the Proof of Lemma 1

Let be w̃ = P
[
a(h) ≤ X(h) < z|x ∈ A,M(h) = 1

]
.

I Assume that there exists x,y belonging to all the cells
As(φ(n)) s.t. |m(x)−m(y)| > c/2.

I By hypothesis, L?(As(ψ◦φ(n)), d, w̃)→ 0 in probability.
I supd∈CAs(n)

L?(Cn, d, w̃)→ 0 a.s. where Ci = ∩ik=1As(k)

(Technical Lemma 2).
I |L?(Ci, d, w̃)− L?(C∞, d, w̃)| ≤ ε, hence L?(C∞, d, w̃) = 0.
I Because L?(C∞, d, w̃) = 0, then m is constant in C∞

(Technical Lemma 1), which contradicts
|m(x)−m(y)| > c/2.
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Sketch of the Proof of Lemma 2
I Assume that there exists c > 0, 0 < p0 < 1, such that

Ln
(
As(n), d̂s(n), ŵs(n)

)
> c,

with probability at least p0.
I For k sufficiently large,∣∣Ln (Ak, d̂s(n), ŵs(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)∣∣ ≤ ξ
(Technical Lemma 3).

I Therefore, with probability at least p0, we have

c− ξ ≤ Ln
(
As(n), d̂s(n), ŵs(n)

)
− ξ ≤ Ln

(
Ak, d̂s(n), ŵs(n)

)
.
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Ln
(
Ak, d̂s(n), ŵs(n)

)
≤ sup

d∈CAk
∩CAs(n)

w∈WAk

Ln (Ak, d, w)

≤ sup
d∈CAk

w∈WAk

Ln (Ak, d, w) ≤ ξ.

Thus,
c− ξ ≤ Ln

(
Ak, d̂s(n), ŵs(n)

)
≤ ξ

which is a contradiction. Therefore

Ln
(
As(n), d̂s(n), ŵs(n)

)
≤ ξ.
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