
           Centro de Investigación en Matemáticas, A.C.

T H E S I S

presented in partial fulfi llment 
of the requirements for the degree of

PhD in Probability and Statistics

by 
Irving Gómez Méndez

Advisor:
Dr. Emilien Joly

Guanajuato,  Guanajuato,
February 2021

Random Forests and 
Autoencoders

with Missing Data





Acknowledgments

I am more than thankful with CIMAT for all the support provided in different ways,
which together with the scholarship granted by CONACyT allowed the successful con-
clusion of this project. Moreover, I would like to thank all the assistant from CIMAT
as well as the government of Guanajuato, through the Educafin program, for a fruitful
stay at Inria-Lille.

I appreciate all the help, interest and guidance from my advisor Emilien Joly, as
well as for all the freedom and trust granted throughout these years. Additionally, I
want to take this opportunity to thank Jill-Jênn Vie for always made me feel welcome
in France, for sharing your culture with me and for all those enjoyable chats. I would
like to thank both of you for keeping the good mood in all circumstances.

I am grateful to all my friends for all your help, support, smiles and laughs: Roćıo,
Cricelio, Jesús Manuel, Carolina, Laritza, Karla. Special thanks go to Montserrat and
Monyrattanak for mantaining a pleasant and warmful environment at home. I would
like to warmly thank those friends who has become family, Diana and Enrique. Guys,
I thank you all for sharing the spark of friendship with me.

Last but not least, I would like to thank my family; my grandparents: Susy, René,
Refugio and Macario; my parents: René and Paty; and my brothers: Eric and René. I
am forever grateful for your unconditional support and love.

I





Abstract

This work addresses the problems of regression with missing data through random
forests and the reconstruction of the original data set using autoencoders. Existing
algorithms that estimate the regression function using random forests with missing
data can be divided in two groups. The first group refers to algorithms that manage
missing values directly in the building of recursive trees. The second group is composed
by algorithms that attempt to impute the missing values through iterative procedures
where the improvement is done through the construction of random forests using the
current imputations. After a review on previews approaches, a new method is proposed.
The proposal modifies the original CART criterion to overcome the problems faced by
this criterion when attempts to handle missing values. Then, under some conditions,
we show that this approach generates consistent estimates of the regression function.
On the other hand, in a simulation study it is shown that the proposed procedure can
obtain similar results to state-of-the-art methods in terms of mean squared error and
bias. We discuss some drawbacks of the proposal and give ideas on how to adapt it
to handle large amount of missing data. A second part of the work is devoted to the
use of autoencoders to reconstruct original observations. This reconstruction is done
through the representation in a latent space of the observed part of the input. Denoising
autoencoders are introduced as a popular procedure to learn a robust representation
of the data in a lower dimension, injecting noise to the original observations. We
discuss how the noise injection procedure can help to reconstruct an observation with
missing values. After a review of variational inference, a new family of autoencoders
known as variational autoencoders is presented as a state-of-the-art generative method
which can be adapted to handle missing values. Finally, we develop a loss function to
train variation autoencoders with missing values which is also a lower bound for the
log-evidence and the logarithm of the missingness mechanism, present some extensions
of these algorithms and briefly discuss how they might be introduce in the field of
recommender systems.

III





Contents

Introduction 1

1 Statistical Learning with Missing Data 5
1.1 Regression and Classification . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Introduction to Random Forests . . . . . . . . . . . . . . . . . . 8
1.2.2 Split Criteria for Classification . . . . . . . . . . . . . . . . . . . 11
1.2.3 Formal Definitions for the CART Criterion . . . . . . . . . . . . 12

1.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . 16
1.4.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Mechanisms for Missing Data . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Previous Approaches to Handle Missing Data Using Random Forests . . 19

1.6.1 Previous Approaches Implementing Imputation of Missing Values 19
1.6.2 Previous Approaches Without Implementing Imputation of Miss-

ing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7 A Random Forest Algorithm with Partial Imputations for Missing Entries 22

2 Simulation Study of a Random Forest Algorithm with Interval Impu-
tation of Missing Entries 27
2.1 Bibliographic Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Comparison Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Simple Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Imputation Approaches Based on Random Forests . . . . . . . . 35
2.3.3 Missing Incorporated in Attributes . . . . . . . . . . . . . . . . . 37

2.4 Varying the Rate of Missing Values . . . . . . . . . . . . . . . . . . . . . 40
2.5 Decomposition of the CART Criterion . . . . . . . . . . . . . . . . . . . 44
2.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 47

V



VI

3 Consistency of a Random Forest Algorithm with Interval Imputation
of Missing Entries for an Additive Model 51
3.1 Consistency of a Random Forest Algorithm with Missing Entries for an

Additive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Low Values of the Theoretical CART Criterion Implies Minimum Varia-

tion of the Regression Function . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 The Empirical CART Criterion Converges to Zero in Probability . . . . 58
3.4 Asymptotically the Regression Function has no Variation on Final Nodes 63

4 Use of Autoencoders for the Reconstruction of Missing Data 67
4.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Example (MNIST Data Set) . . . . . . . . . . . . . . . . . . . . 69
4.2 Missing Data with Denoising Autoencoders . . . . . . . . . . . . . . . . 71

4.2.1 Example (MNIST Data Set, Continuation) . . . . . . . . . . . . 73
4.2.2 Extensions of Denoising Autoencoders . . . . . . . . . . . . . . . 75

4.3 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Bernoulli Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Example (MNIST Data Set, Continuation) . . . . . . . . . . . . 82

4.5 Variational Autoencoders with Missing Values . . . . . . . . . . . . . . . 83
4.5.1 Example (MNIST Data Set, Continuation) . . . . . . . . . . . . 86
4.5.2 Extensions of Variational Autoencoders . . . . . . . . . . . . . . 88

4.6 Recommender Systems with Autoencoders and Future Work . . . . . . . 90

References 91

Appendices 99
A Decomposition of the CART Criterion . . . . . . . . . . . . . . . . . . . 99
B Tables for the MSE and Bias for Different Approaches varying the Per-

centage of Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Introduction

In various fields of science, technology and humanities, experts aim at predicting a
phenomenon based on past observations or measurements. For instance, meteorologists
try to forecast the weather for the next days or weeks from the climatic conditions
of the previous days. In medicine, clinical information is collected for diagnosing the
condition of patients. In all of these cases, the goal is the prediction of a response
variable based on a set of observed predictor variables. When the possible values taken
by the response variable belong to a discrete set of values, the prediction of the response
from observed predictor variables is known as classification, for example when a patient
is diagnosed from a set of possible diseases based on its clinical information. When the
possible values of the response belong to a continuous space, then the prediction of its
value from observed predictor variables is known as regression, for example when the
temperature of the next days is predicted from previous climatic conditions.

Statistical methods for regression and classification have been used for centuries
to help researchers and practitioners with these problems of prediction. However, the
increasingly speed at which data is generated and the variety of its type has surpassed
the limits of standard statistical methods. Fortunately alongside the progress in data
generation, new techniques and algorithms from the field of machine learning have
been developed as powerful tools for the analysis of complex and large data. Some
of these algorithms are the random forests and the neural networks which has been
successfully involved in problems of regression and dimensionality reduction. Most of
these techniques have been developed considering that all the variables considered in
the analysis are available. Although, in practice it is common to deal with data sets
that has missing values.

The present work might be divided in two parts. The first one is dedicated to the
study and discussion of different techniques based on random forests for regression with
missing values, we emphasize and discuss the distinction between two groups. The
first group is form by algorithms that attempt to reconstruct the original values using
random forests to improve the reconstruction iteratively, sometimes making use of extra
structures like the proximity matrix. The second group is composed by algorithms that
handle the missing values directly into the composition of the recursive trees rather than
trying to impute the missing values. We introduce an alternative algorithm to manage
missing data in regression problems, which is achieved through an adaptation of the
original random forests algorithm built with the CART criterion. We show through
an example the problem presented in the original algorithm which makes it non-viable

1



2

in the presence of missing entries. Our research shows the consistency of the proposal
when the introduction of missing values is made completely at random and when the
regression function can be expressed as an additive model. We discuss some implications
of the assumptions presented in this work and give some ideas on how to extend the
results under more general conditions. We also develop a simulation study comparing
the proposed approach with other algorithms to handle missing values using random
forests. The compared techniques include simple baselines, algorithms that iteratively
impute the missing values and the Missing Incorporated in Attributes (MIA) which is
an approach that manage the missing values directly in the construction of the trees.
The simulation study considers the introduction of missing values in distinct variables
under seven different mechanisms of missingness, and shows that the proposal can assess
similar behavior as state-of-the-art methods. Moreover, study includes the comparison
varying the percentage of missing values, discuss some drawbacks and possible ways to
solve them so the proposed algorithm could scale efficiently with the amount of data.
In our simulation study we also break our CART criterion into four different parts,
giving a possible interpretation to these components and showing their behavior under
a missing completely at random (MCAR) scenario.

The second part of this work was developed during a stay at Inria-Lille, in collabo-
ration with Dr. Jill-Jênn Vie. It is devoted to the reconstruction of the original data set
from important characteristics, which in turn are learned just with the available infor-
mation in the incomplete data set. This part focuses on the use of a particular family
of neural networks known as autoencoders, which were first introduced as a non-linear
dimensionality reduction technique and then extended to ensure robust representation
of the original inputs into a latent space of lower dimension. The robustness is achieved
through the injection of a small amount of noise which forces the autoencoders to learn
useful representations. The original inputs might be reconstructed from this represen-
tation, yielding a new family of autoencoders known as denoising autoencoders. This
technique has been useful when the noise injection is replaced with a procedure that
creates “blank” spaces. Another family of autoencoders arrives with the use of vari-
ational inference. These autoencoders learn a regular space to represent the data for
generative purposes. That is, they can create new unseen elements similar to those
presented in the original data set, sampling from the latent space. Members of this
family are known as variational autoencorders and represent the state-of-the-art on the
use of neural networks in a variety of fields. We deduce a lower bound for the evidence
and the mechanism of missingness. Training variational autoencoders with this lower
bound allows their use to reconstruct an original input when there are missing values.
These models do not only impute the missing values, but they can be used to generate
new data with a similar mechanism of missingness, an important goal when we like to
shared sensitive data with a third party. Throughout the discussion on autoencoders
with missing data we applied them to the MNIST data set to illustrate their employ-
ment. Finally, we discuss some extensions of autoencoders especially on their promising
use on recommender systems.



3

Outline of the Thesis

• Chapter 1: This chapter begins with an introduction on statistical learning, de-
scribing the most common scenarios. This work is principally devoted to the so-
called supervised statistical learning, although some aspects of the unsupervised
statistical learning play an important part too. Hence,a review on the foundations
of supervised statistical learning is offered, focusing on the problems of regression
and classification, briefly discussing some differences between the parametric and
the non-parametric approaches. The random forests algorithm is introduced in
this chapter as well as crucial concepts as the CART criterion and data-missing
mechanisms. It is discussed how random forests have been used to handle missing
values. After this discussion, I propose a new approach based on a modify ver-
sion of the CART criterion. This new version of the CART criterion enables the
creation of recursive trees that handle the missing values directly in their construc-
tion. The chapter then moves to the introduction of some tasks on unsupervised
statistical learning, with special interest on dimensionality reduction. Artificial
neural networks are defined at this point, discussing some of their applications.
After this preamble on neural networks and dimensionality reduction, autoen-
coders are presented as a family of neural networks that allows the reconstruction
of observations from a representation in a space of lower dimension. The knowl-
edge of the necessary concepts and tools will help to comprehend the underlying
concepts behind the procedures considered in this work and it will be useful in
designing new algorithms to face diverse problems.

• Chapter 2: I present the results of a simulation study in a regression problem with
missing values, comparing different methods based on random forests. The study
considers seven different mechanisms of missingness similar to those presented
in Rieger, Hothorn, and Strobl (2010), and the performance of the methods is
measured in terms of their mean squared error. Furthermore, I also compare the
different methods in terms of their bias, giving new insights on the behavior of the
methods widely ignored in the previous literature. Then, I vary the percentage of
the missing values for a wide range of values, from a low number of observations
with missing values to data sets where up to 95% of the observations present some
missingness. These studies show that the proposed algorithm in Chapter 1 can
acquire similar performance to state-of-the-art procedures or even surpass them
for data sets with large percentage of missing values. Important computational
drawbacks on the proposal are discussed as well as some ideas to overcome these
issues. Due to a lack of packages to manage missing values, I programmed the
proposed approach as well as the well-known MIA procedure in R without relying
on previous packages. At the end of the chapter I present a decomposition of the
modified CART criterion, giving a possible interpretation to the components and
studying them in an MCAR scenario.

• Chapter 3: An overview on previous works that studied the consistency of random
forests is offered in this chapter. After this overview I show how the recursive trees
built with the modified CART criterion presented in Chapter 1 can be consistent
under specific assumptions. This result considers an additive model for the regres-
sion function, as was done by Scornet, Biau, and Vert (2015), and missing values
introduced accordingly to an MCAR procedure. The complete proof is presented,
dividing it into three main parts. The first part is devoted to the study of the
theoretical version of the modified CART criterion, and showing that low values



4

of this version imply minimum variation on the regression function. I present
through an example how this implication is not hold when the assumption of an
additive regression function is not preserve. In the second part, the empirical
modified CART criterion is studied showing that it tends to zero in probabil-
ity. The third part combine the two first results, showing that asymptotically
the regression function has no variation on the final cells constructed empirically.
Finally, the consistency is achieved as a consequence of the non-variation of the
regression function on the final cells. I briefly discuss the assumptions considered
and possible extensions of the results considering more general conditions. Up to
my knowledge, this is one of the first results showing the consistency of regression
estimators with missing values.

• Chapter 4: Different autoencoders are presented in this chapter, as neural net-
works capable to learn a reliable space to represent the data and to reconstruct
the original observations from this low-dimensional representation. Denoising au-
toencoders (DAEs) are introduced as an improvement of the original autoencoders
to generate more robust representations. With minimal changes, this new family
of autoencoders could be used to impute missing value. Hence, a wide discussion
on the use of DAEs for imputed purposes is given. Then, a review on variational
inference is presented with a new family of autoencoders known as variational
autoencoders (VAEs). Originally created for generative purposes, they can also
be used to reconstruct an input with missing values. I deduce a lower bound
for the evidence and the mechanism of missingness, which can be used to train
VAEs. I discuss how this lower bound enables the VAEs to reconstruct the orig-
inal observations as well as learning the mechanism of missingness. Finally, I
briefly discuss some extensions for their implementation in recommender systems.
Throughout this chapter I use an example based on the well-known MNIST data
set to illustrate the different ideas and methods introduced.



1
Statistical Learning with Missing Data

When scientists learn about nature, the environment can be thought as a passive agent
- apples drop, stars shine, and the rain falls without regard the needs of the scientists.
We model such learning scenarios by postulating that data is generated by some random
process. The task of statistical models is to process such randomly generated examples
toward drawing conclusions for the phenomenon from which these examples are picked.
Statistical learning uses the strengths and special abilities of computers to perform tasks
that fall way beyond human capabilities. For example, the ability to scan and process
huge databases allows the statistical learning program to detect meaningful patterns
that are outside the scope of the scientists’ perception and may have been missed by
the human observer. On the other hand, machine learning can be defined as the study of
systems that can learn from data without being explicitly programmed, and a computer
program is said to learn from data with respect to some task if its performance at
that task improves with data (Louppe, 2014; Mitchell et al., 2011). This description
highlights the close relationship between machine learning and statistics, and constitutes
the basic building block of the statistical learning. As commented by Barcenas (2020),
this process typically has two phases:

1. Training phase: In this phase, a model is constructed from a training data set,
where usually the response variable is known along with the predictor variables
(labeled data), and both of them are used to improve the performance of the
model. Hence, the model is trained by minimizing some loss function that mea-
sures the difference between the prediction made by the model and the true value
of the response variable.

2. Testing phase: This phase is characterized by the use of a testing data set which
has not made available in the training phase. During the testing phase the con-
structed model must predict the response variable of the observations in the testing
data set. These predictions are then compared with the true value of the response
to measure the performance of the algorithm.

We can distinguish different learning scenarios based on the types of data, the order
and the method by which the training data and the testing data are received, as well
as their use to evaluate the learning algorithms. We briefly describe some common
machine learning scenarios, based on the classification made by Mohri, Rostamizadeh,
and Talwalkar (2018) and Shalev-Shwartz and Ben-David (2014):

• Supervised learning: It describes a scenario in which the training data set con-
tains labeled observations. The model is then train to predict the label based

5



6

on the predictor variables. In such cases we can think of the environment as a
teacher that “supervises” the model by providing that extra information (the re-
sponse variable). This is the most common scenario associated with classification,
regression, and ranking problems.

• Unsupervised learning: In this case the model exclusively receives unlabeled train-
ing data, that is, observations without the value for the response variable, or even
without the existence of such labels. The model processes the input data with
the goal of coming up with some summary, or compressed version of that data.
Since there is an unclear distinction between training and testing data, it can be
difficult to evaluate the performance of the model. Clustering and dimensionality
reduction are examples of unsupervised learning problems.

• Semi-supervised learning: The model receives a training sample consisting of both,
data with the response variable (labeled data) and without it (unlabeled data),
and makes predictions for all unseen points. Semi-supervised learning is common
in settings where unlabeled data is easily accessible but labels are expensive to
obtain. Various types of problems arising in applications, including classification,
regression, or ranking tasks, can be framed as instances of semi-supervised learn-
ing. The hope is that the distribution of unlabeled data accessible to the model
can help it achieve a better performance than in the supervised setting.

• Online learning: In contrast with the previous scenarios, the online scenario in-
volves multiple rounds where training and testing phases are intermixed. In this
case the model has to respond online, throughout the learning process, instead of
engage the acquired knowledge only after having a chance to process large amount
of data. At each round, the model receives a training point without the value of
the response variable, makes a prediction, receives the true value, and incurs a
loss. The objective in the online setting is to minimize the cumulative loss over
all rounds or to minimize the regret, that is the difference of the cumulative loss
incurred and that of the best model in hindsight. The model becomes an expert
over time, but might have made costly mistakes in the process. In contrast, in
the previous scenarios the model has large amount of training data to play with
before having to output conclusions.

• Reinforcement learning: The training and testing phases are also intermixed in
reinforcement learning. To collect information, the model actively interacts with
the environment and in some cases affects it, and receives an immediate reward for
each action. The objective of the model is to maximize the reward over a course
of actions and iterations with the environment. Hence, the model is faced with
the exploration versus exploitation dilemma, since it must choose between explor-
ing unknown actions to gain more information versus exploiting the information
already collected.

A learner model that interacts with the environment at training time, say, by pos-
ing queries or performing experiments is called an active learner, while a passive learner
only observes the information provided without influencing or directing it. Thus, active
learning refers to a model that adaptively or interactively collects training observa-
tions. The goal in this case is to achieve a performance comparable to the standard
supervised learning scenario (or passive learning scenario), but with fewer labeled ob-
servations. Active learning is often used in applications where getting the response



Chapter 1. Statistical Learning with Missing Data 7

variable is expensive, for example computational biology applications. The previous
learning scenarios relies somewhere in the middle between the active-passive spectrum.

In this work we discuss only a subset of the possible learning paradigms. Our main
focus is on supervised statistical learning with passive learner models, particular interest
is on regression with missing data and the reconstruction of the original observations.
We also discuss briefly unsupervised learning, in particular dimensionality reduction.

1.1 Regression and Classification

In supervised statistical learning we have an outcome measurement Y ∈ Y that we
wish to predict based on a set of input variables X(1), . . . ,X(p) where X(j) ∈ X (j) for
j = 1, . . . , p. Together, the input variables (X(1), . . . ,X(p)) form a p dimensional input
vector X taking its values in X = X (1) × · · · × X (p).

The input space X and the output space Y are assumed, by definition, to respectively
contain all possible input vectors and all possible output values. The input variables
are sometimes known as features and the output variable as target. If Y is a continuous
variable then the learning task is a regression problem.

Formally, the aim is to find a function f : X → Y that minimizes

EX,Y [L(f(X), Y )]

where L : Y × Y → R is a loss function that penalizes errors in the prediction. By
far, the most common loss function for regression problems is the squared error loss
L(f(X), Y ) = (f(X)− Y )2, and the function m which satisfies

m = arg min
f :X→Y

EX,Y

[
(f(X)− Y )2

]
is given by the regression function m(X) = E[Y |X].

If Y takes its values from a finite set without an order, we say that it is a categorical
variable and the learning task is a classification problem. In this kind of problems it is
usual to consider the 0-1 loss function L(f(X, Y )) = 1 f(X)6=Y . Let Y = {c1, . . . , cJ},
the function m which satisfies

m = arg min
f :X→Y

EX,Y

[
1 f(X)6=Y

]
is called the Bayes classifier, given by m(X) = arg maxy∈{c1,...,cJ} P [Y = y|X].

For practical problems, the distribution of (X, Y ) is unknown and hence, the regres-
sion function or the Bayes classifier are unknown as well. However, in our framework,
we have access to a training data set Dn = (Xi, Yi)i=1,...,n where the collected data has
the same distribution than (X, Y ). The goal is to use the data set Dn to construct
a learning model, also called learner or predictor, mn : X → Y which estimates the
function m, and enables us to predict the outcome for new unseen objects.

At least two distinct strategies can be used to solve the estimation problem, the
parametric and the non-parametric approaches. In a nutshell, the parametric estimation
uses a model belonging to a set of functions FΘ determined by a finite number of
parameters θ ∈ Θ, then the estimation is made through the inference of this set of
parameters that minimize the empirical risk,

mn ≡ mn(·, θ̂) = arg min
fθ∈FΘ

EDn [L(fθ(X), Y )]



8 1.2. Random Forests

where
θ̂ = arg min

θ∈Θ
EDn [L(fθ(X), Y )]

Parametric estimates usually depend only on a few parameters, therefore they are suit-
able even for small sample sizes n. Furthermore, they are often easy to interpret, for
example in a linear model (when m is a linear function) the absolute value of the co-
efficients indicates how much influence the components of X has on the value of Y ,
and its sign describes the nature of this influence (increasing or decreasing the value
of Y ). However, as pointed out by Györfi et al. (2002) parametric estimates have a
rigid structure that can make them to produce large errors for every sample size if
the true underlying regression function cannot be well approximated by the parametric
structure.

As commented by Müller and Quintana (2004) to relax the parametric assump-
tions and allow greater modeling flexibility and robustness against mis-specification of
a parametric statistical model we consider models that cannot be indexed by a finite di-
mensional parameter. This kind of models are known as non-parametric models. More
formally, the non-parametric estimation uses a model belonging to a set of functions Fn
not determined by a finite set of parameters, whose complexity is allowed to increase
with n. From a practical point of view, this algorithms are popular since they can be
implemented even with little or no context of the problem and without requiring to
minimize a certain loss function. However, considerable effort have been put to improve
these algorithm and to find optimal values for hyper-parameters (see e.g. Devroye and
Lugosi (2012), Tsybakov (2008), and Efromovich (2008)). Furthermore, it has been
proved that some non-parametric algorithms actually minimize certain loss function
(see Györfi et al. (2002)), so they can be expressed as

mn = arg min
f∈Fn

EDn [L(f(X), Y )]

A desirable for an estimate is that, as the sample size grows, it should converge to
the estimated quantity, that is., the error of the estimate should converge to zero for a
sample size tending to infinity. Estimates which have this property are called consistent.
A sequence of regression function estimates {mn} is called weakly consistent for a certain
distribution of (X, Y ), if

lim
n→∞

EX,Y |Dn [mn(X)−m(X)]2 = 0

It may be that a regression function estimate is consistent for a certain class of distri-
butions of (X, Y ), but not consistent for others. It is clearly desirable to have estimates
that are consistent for all the distributions. A sequence of regression function estimates
{mn} is called weakly universally consistent if it is weakly consistent for all distributions
of (X, Y ) with E[Y ]2 <∞.

1.2 Random Forests

1.2.1 Introduction to Random Forests

Introduced by Breiman (2001), the random forest algorithm is named after the general
technique that consists in building and exploiting the objects called decision trees. These
objects are rooted trees in the mathematical sense and are, most of the time, binary
trees. Each path starting from the root corresponds to a decision (sometimes called



Chapter 1. Statistical Learning with Missing Data 9

prediction), and each branch represents a region of the input space. Moving along the
path of the decision tree corresponds to a choice of one of the possible regions. Decision
trees are conceptually simple yet powerful and attractive in practice for several reasons:

• They can model arbitrarily complex relations between the input and the output
space.

• They handle categorical or numerical variables, or a mix of both.

• They can be used in regression or supervised classification problems.

• They are easy interpretable, even for non-statisticians.

To construct the partition of the input space, some decision trees are built in a
recursive way, therefore they are called recursive trees. The root of the tree is the whole
input space X which is split into disjoint regions. Then each region is split and this
process continues until some stopping rule is applied (see Figure 1.1). At each step of the
tree construction, a partition is performed over a cell (or equivalently its corresponding
node) maximizing some split criterion.

X(1)

X(2) z1

..
. .

.

X(2) ≥ z1

X(1)

X(2) z1

z2

..
. .

.

X(2) ≥ z1

X(1) ≥ z2

X(1)

X(2) z1

z2z3

..
. .

.

X(2) ≥ z1

X(1) ≥ z2 X(1) ≥ z3

Figure 1.1: The construction of the trees is done in a recursively. At each step of the
tree construction a partition is performed over a cell (or equivalently its corresponding
node) maximizing some split criterion.

The random forest algorithm is made of a set of M(> 1) randomized (in its con-
struction) recursive trees that are later aggregated all together (with a simple mean
idea for regression problems). Since a random forest aggregates the information of
many different decision trees in a global predictor, it ends to be more stable (and then
more informative) than each specific tree. Randomization is introduced in two different
parts of the tree construction. The first source of randomness is through the bootstrap-
aggregation technique (Breiman, 1996) -commonly called bagging or subsampling step-
which consists in selecting an observations randomly with (or without) replacement
from the training data set Dn, prior to the construction of each tree. Only these an
observations are taken into account in the tree construction. The second source of ran-
domness is introduced during the split of a node, this split is performed by maximizing



10 1.2. Random Forests

the split criterion over mtry input variables chosen uniformly at random among the
original ones. The tree construction is stopped when each final node contains less or
equal than nodesize points or when the tree has tn final nodes. Hence, the parameters
of this algorithm are:

• M > 1, which is the number of trees in the forest.

• an ∈ {1, . . . , n}, which is the number of observations in each tree.

• mtry ∈ {1, . . . , p}, which is the number of directions (features) chosen, candidate
to be split. We denote by Mtry the features selected in each step.

• nodesize ∈ {1, . . . , an}, which is the maximum number of observations for a node
to be a final cell.

• Instead of nodesize we can use the parameter tn ∈ {1, . . . , an}, which is the
number of leaves (final nodes) in each tree.

As mentioned by Scornet, Biau, and Vert (2015) this algorithm or some modifi-
cations have been successfully involved in various practical problems, however little is
known about the mathematical properties of the method which has lead the community
to underline a “gap” between theory and practice. Part of this gap can be explained by
the bagging mechanism and the splitting criterion. Each of these processes introduces
a source of randomness into the construction of the trees which makes the random
forest algorithm very challenging to be studied in its full generality. One way to ex-
amine the theoretical justifications of random forests is through simplified versions of
the original procedure. This is often done by simply ignoring the bagging step and/or
by replacing the splitting criterion with a more elementary protocol (see, for example
Breiman (2004)). However, in recent years, important theoretical studies have been
performed to analyze more elaborated models (e.g. Biau, Devroye, and Lugosi (2008),
Ishwaran and Kogalur (2010), Biau (2012), Genuer (2012), and Zhu, Zeng, and Kosorok
(2015)). This non-parametric technique has various computational benefits over many
other approaches, the small number of hyper-parameters to be tuned in the random
forests algorithm makes it fast and simple, and the bagging technique allows a straight-
forward parallelization which has made random forests one of the most popular tools
for handling data sets of large size.

The randomization of the trees (independent from the original source of randomness
in the sample Dn) is represented in a symbolic random variable Θ. To each tree – ran-
domized with the random variable Θk – is associated a predicted value at a query point
x, denoted by mn(x; Θk). The different trees are constructed by the same procedure
but with independent randomization so that the random variables Θ1, . . . ,ΘM are i.i.d.
with common law Θ. The nature and dimension of Θ depends on its use in the tree
construction. In our choice of construction rules, Θ consists of the observations selected
for the tree and the candidate variables to split at each step.

At the end of the tree construction, a partition of the space X is returned in a form
of a collection of cells (An,j)j≥1. Each of these cells corresponds to a leaf of the tree and
they are called final cells to emphasize their difference with the cells that we consider
during the construction of the tree. In order to perform the estimation, only these final
cells are necessary. Finally, the kth tree estimate is defined as

mn(x; Θk) =
∑

i∈In,Θk

Yi1Xi∈An(x;Θk)

N(An(x; Θk))



Chapter 1. Statistical Learning with Missing Data 11

where In,Θk is the set of the an observations selected prior to the construction of the
kth tree, An(x; Θk) is the unique final cell that contains x, and N(An(x; Θk)) is the
number of observations which belong to the cell An(x; Θk). The aggregation of the trees
forms the finite random forest estimate given by

mM,n(x; Θ1, . . . ,ΘM ) =
1

M

M∑
k=1

mn(x; Θk).

It is known from the work of Breiman (2001) that the random forest estimate does not
overfit when M tends to infinity. This makes the parameter M only restricted by the
computational power.

1.2.2 Split Criteria for Classification

Different split criteria have been proposed depending on the statistical problem and
the nature of the input space. For regression purposes, the most commonly used is the
CART criterion (Breiman et al., 1984). For supervised classification, the split criterion
usually takes the form of an impurity function to be minimized, like the misclassification
error, the Gini index (Gini, 1912) or the criteria known as ID3 and C4.5 (Quinlan,
1986; Quinlan, 1993) which minimize the Shannon entropy (Shannon, 1948) and replace
binary splits on categorical variables with multiway splits.

To define the impurity functions for the classification tasks, assume that Y =
{c1, . . . , cJ}, fix a cell A of the tree and denote by N(A) the number of observations
belonging to that cell, let be

pcj =
1

N(A)

n∑
i=1

1 Yi=cj ,Xi∈A

the proportion of observations of the class cj in node A. We classify the observations in
cell A to class ĉA = arg maxcj pcj , the majority class in the cell. The previous impurity
functions are then defined as

Missclassification error:
1

N(A)

n∑
i=1

1 Yi 6=ĉA,Xi∈A = 1− pĉA

Gini index:

J∑
j=1

pcj (1− pcj )

Shannon entropy: −
J∑
j=1

pcj log2 pcj

For two classes, if p is the proportion in the second class, these three measures are
1−max{p, 1− p}, 2p(1− p) and −p log2(p)− [(1− p) log2(1− p)], which are shown in
Figure 1.2. All three are similar, but Shannon entropy and Gini index are differentiable,
and hence more amenable to numerical optimization. In addition, Shannon entropy and
Gini index are more sensitive to changes in the node probabilities than the misclassifi-
cation rate. However, while they are robust and reliable impurity functions they are not
exempt of defects, like the end-cut preference (Morgan and Messenger, 1973; Breiman
et al., 1984), that is the tendency to favor unbalanced splits (in the number of points
belonging to each child node) in which p is near 1 or zero, resulting in deep and uninter-
pretable trees. Furthermore, as some authors have pointed out (Quinlan, 1986; Strobl,



12 1.2. Random Forests

Boulesteix, and Augustin, 2007), they have the propensity of preferring splits based on
input variables with many outcomes.

Facing this problem, Hothorn, Hornik, and Zeileis (2006) introduce conditional in-
ference trees. Splits are performed in two steps. In the first step the relation of a
variable to the response in assessed by permutation tests based on a theoretical condi-
tional inference developed by Strasser and Weber (1999). After the strongest relation is
found by minimal p-value of the permutation tests it is checked if the significance to a
certain level is still present after adjustment for multiple testing. Finally, in the second
step the best cutpoint is determined for the variable chosen. The growth of the tree
stops when no further significant relations are found.

pM
is
sc

la
ss

ifi
ca

ti
on

er
ro

r

G
in

i in
de

x

Sh
an

no
n

en
tr
op

y

00 0.5 1.0
0

0.5

1.0

Figure 1.2: Node impurity measures for two-class classification, as a function of the
proportion p in the second class.

1.2.3 Formal Definitions for the CART Criterion

The present work focuses on the CART split criterion, although the ideas can be gen-
eralized to other criteria. We first introduce some important notations.

• A =
∏p
h=1[a(h), b(h)], denotes a general node (or cell), a(h), b(h) ∈ X (h) for all

h = 1, . . . , p.

• N(A) holds for the number of points in A.

• The notation d = (h, z) denotes a cut in A, where

h is a direction, h ∈ {1, . . . , p}, and

z is the position of the cut in the hth direction, between the limits of A, that is
a(h) < z < b(h).

• CA is the set of all possible cuts in the node A. It means that h do belong to the
set Mtry and that for any chosen h, z lies between the bounds of the cell A in
that specific direction.

• A cell A is split into two cells denoted as AL = {x ∈ A : x(h) < z} and AR =
{x ∈ A : x(h) ≥ z}.

• ȲA (respectively ȲAL , ȲAR) is the empirical mean of the response variable Yi for
the indexes such that Xi belongs to the cell A (respectively AL, AR).



Chapter 1. Statistical Learning with Missing Data 13

Then, the empirical version of the CART split criterion for a generic cell A and the
full sample Dn is defined as

Ln(A, d) =
1

N(A)

n∑
i=1

(
Yi − ȲA

)2
1Xi∈A

− 1

N(A)

n∑
i=1

(
Yi − ȲAL1X

(h)
i <z

− ȲAR1X
(h)
i ≥z

)2
1Xi∈A

with the convention 0/0 = 0.

Definition 1 Empirical CART Criterion

Intuitively, the CART criterion compares the empirical variance inside the cell A
with the sum of the two empirical variances of the sub-cells AL and AR. At each step of
the creation of the random tree, the current cell A is selected and split by choosing the
best empirical cut d̂ = (ĥ, ẑ) so that Ln(A, d) is maximal over the set CA, that is

d̂ = (ĥ, ẑ) ∈ arg max
d∈CA

Ln(A, d)

Definition 2 Best Empirical Cut

The theoretical counterpart of the empirical CART criterion is given by

L?(A, d) =V[Y |X ∈ A]− V[Y |X(h) < z,X ∈ A]P[X(h) < z|X ∈ A]

− V[Y |X(h) ≥ z,X ∈ A]P[X(h) ≥ z|X ∈ A],

analogously to the empirical case, we define the best theoretical cut d? = (h?, z?) in A
as

d? = (h?, z?) ∈ arg max
d∈CA

L?(A, d)

By the classical strong law of large numbers, Ln(A, d) converges almost surely to
L?(A, d) as n tends to infinity, for all cuts d ∈ CA. This fact leads to the interpretation
that the chosen cuts at each step of the tree construction tend to decrease the variability
of the sets of data points corresponding to the child nodes. This implies that the
empirical mean in each cell tends to stabilize around a value which corresponds to the
conditional mean for the cell.

Applying basic algebra, it is easy to get an equivalent expression for the empirical
CART criterion, given by

Ln(A, d) =
N(AL)N(AR)

N(A)N(A)

(
ȲAL − ȲAR

)2
(1.1)

Thus, from Equation (1.1), we can get an alternative expression to the theoretical CART
criterion, given by

L?(A, d) =P[X(h) < z|X ∈ A]P[X(h) ≥ z|X ∈ A]

×
(
E[Y |X < z,X ∈ A]− E[Y |X ≥ z,X ∈ A]

)2



14 1.3. Neural Networks

1.3 Neural Networks

Neural networks were developed soon after the advent of computers in the fifties and
sixties with an initial excitement about the prospects of artificial intelligence. However,
after the initial euphoria, there was a period of disappointment in which the com-
putationally intensive nature of neural networks was seen as an impediment to their
usability. Eventually greater data availability and increasing computational power lead
to increased successes of neural networks, and this area was reborn under the new label
of “deep learning”.

Neural networks contain computation units referred to as neurons as an attempt
to simulate the human nervous system for machine learning tasks. The computational
units are connected to one another through weights, which serve the same role as the
strengths of synaptic connections in biological organisms, these weights affect the func-
tion computed at that unit. An artificial neural network computes a function of the
inputs by propagating the computed values from the input neurons to the output neu-
rons and using the weights as intermediate parameters. Learning occurs by changing
the weights connecting the neurons.

These models gain their power by putting together many such basic units, and
learning their weights jointly in order to minimize a loss function. From this point of
view, a neural network can be viewed as a computational graph of elementary units in
which greater power is gained by connecting them in particular way. The training data
provides feedback to the correctness of the weights in the neural network depending
on how well the predicted output approximates the real target variable in the training
data. The goal of changing the weights is to modify the computed function to correct the
predictions in future iterations. By successively adjusting the weights between neurons
over many input-output pairs, the function computed by the neural network is refined
over time so that it provides more accurate predictions. By combining multiple units,
we increase the power of the model to learn more complicated functions.

A feedforward network defines a mapping mn(·, θ) and learns the value of the weights
θ that result in the best function approximation. These models are called feedforward
because information flows through the function being evaluated from X, through the
intermediate computations used to define mn, and finally to the output Y . There are
no feedback connections in which outputs of the model are fed back into itself. Hence,
these models are represented by composing together many different functions and they
are associated with a directed acyclic graph describing how the functions are composed.
For example, we might have three functions f (1) , f (2) , and f (3) connected in a chain,
to form f(X) = f (3)(f (2)(f (1)(X))). In this case, f (1) is called the first layer of the
network, f (2) is called the second layer, and so on. The overall length of the chain gives
the depth of the model. The learning algorithm must decide how to use those layers to
produce the desired output. Figure 1.3 shows a representation of a feedforward neural
network with 3 layers. According with Goodfellow et al. (2016) these chain structures
are the most commonly used for neural networks. When feedforward neural networks
are extended to include feedback connections, they are called recurrent neural networks.

Neural networks have been successfully introduced in diverse problems of machine
learning. Natural Language Processing (NPL), in a nutshell, is the ability for a com-
puter/system to truly understand human language and process it in the same way that a
human does. Speech recognition, dialog systems, information retrieval, question answer-
ing, and machine translation are some applications of NLP. Nowadays neural networks
and deep learning have become standard methods applied to practically all NLP tasks.
Goyal, Pandey, and Jain (2018) focuses on these applications of neural networks while



Chapter 1. Statistical Learning with Missing Data 15

X

f (1)(X) f (2)(f (1)(X))

Y = f (3)(f (2)(f (1)(X)))

Figure 1.3: Example of a feedforward neural network with 3 layers.

Deng and Liu (2018) recompile state of the art of NLP-centric deep learning research.
Convolutional neural networks are widely used in computer vision with great success
in classification of natural objects. Tasks such as pedestrian detection, car detection,
traffic sign recognition and traffic light (see Aghdam and Heravi (2017) for a deeper
introduction on convolutional neural networks and their applications). Aggarwal et al.
(2018) and Goodfellow et al. (2016) offer an excellent overview for neural networks while
Skansi (2018) gives a detail review of the history of neural networks.

1.4 Dimensionality Reduction

In unsupervised learning there is no label associated to each observation in the data
set. Instead, in these problems we want to learn about the structure of the features.
Examples of unsupervised learning are density estimation, where we want to estimate
the entire probability distribution of the features; clustering, where we are interested in
dividing the data set into clusters of similar observations; or dimensionality reduction,
where we want to find a space of smaller dimension than the input space to represent
the data. We are going to focus on the latter.

Dimensionality reduction is the process of reducing the number of features that
describe some data which can be useful in many situations that require low dimensional
data (data visualization, data storage, heavy computation, etc.). This reduction is
done either by selection (only some existing features are conserved) or by extraction (a
reduced number of new features are created based on the old features). Following the
notation and definitions introduced by Rocca (2019), let us call encoder the process that
produce the new representation from the “old features” (by selection or by extraction)
and decoder the reverse process. Dimensionality reduction can then be interpreted as
data compression where the encoder compress the data (from the initial space to the
encoded space, also called latent space) whereas the decoder decompress them. The
main purpose of a dimensionality reduction method is to find the best encoder/decoder
pair among a given family. In other words, for a given set of possible encoders and
decoders, we are looking for the pair that keeps the maximum of information when
encoding and, so, has the minimum of reconstruction error when decoding. If we denote
respectively as E and D the families of encoders and decoders we are considering, then
the learning process is described simply as minimizing a loss function, that is

(e?, d?) ∈ arg min
(e,d)∈E×D

L(X, d(e(X)))



16 1.4. Dimensionality Reduction

1.4.1 Principal Component Analysis (PCA)

The idea of PCA is to build k new independent features that are linear combinations
of the p old features (k ≤ p) and so that the projections of the data on the subspace
defined by these new features are as close as possible to the initial data (in terms of
euclidean distance). In other words, PCA is looking for the best linear subspace of the
initial space (described by an orthogonal basis of new features) such that the error of
approximating the data by their projections on this subspace is as small as possible.

Translated in our global framework, we are looking for an encoder in the family
E of the p × k matrices (linear transformation) whose rows are orthonormal (features
independence) and for the associated decoder among the family D of p× k matrices. It
can be shown that the unitary eigenvectors corresponding to the k greatest eigenvalues
(in norm) of the covariance features matrix are orthogonal (or can be chosen to be so)
and define the best subspace of dimension k to project data on with minimal error of
approximation. If we denote by Vk this matrix, then the PCA loss function is

Vk = arg min
V ∈Mp×k

‖X− V V TX‖22

we can recognize Z = V TX as the encoder portion and Y = V Z as the decoder portion.

1.4.2 Autoencoders

An autoencoder is a neural network that attempts to reconstruct its input to its output.
Internally, there is a hidden layer Z, called the code, that describes the input. Hence, the
network may be viewed of consisting of two parts: an encoder function Z = e(X) and
a decoder function Y = d(Z). Reconstructing the data might seem trivial by simply
copying the data forward from one layer to another or simply allowing the network
to set d(e(X)) = X, in both cases the autoencoder is not especially useful. Instead,
autoencoders are designed to avoid copying perfectly its input to its output. To avoid
just copying the data forward from one layer to another the code layer Z is constrained
to have a smaller dimension than X, and thus avoiding (at least partially) a perfect
reconstruction of the input. An autoencoder whose code dimension is less than the
input dimension is called undercomplete.

Traditionally, autoencoders have been used for dimensionality reduction. Thus, even
when training a network to learn a lossy reconstruction of the data may sound useless,
we hope that the code Z will learn useful features of the data. Learning an undercom-
plete representation forces the autoencoder to capture the important characteristics
that describe the training data.

It is common (but not necessary) for an M−layer autoencoder to have a symmetric
architecture between the input and the output, where the number of units in the k−th
layer is the same that in the (M −k+ 1)-th layer. The value of M is often odd, and the
(M + 1)/2−th layer is often the most constricted one. Therefore, the minimum number
of layers in an autoencoder is three, corresponding to the input layer, the code layer
and the output layer. However, the real power of autoencoders is achieved when deeper
variants are used. Figure 1.4 shows a diagram of an autoencoder with three layers.

Note that the output Y of the autoencoder does not necessarily belongs to the same
space than X. Thus a final function X̂ = f(Y) might be needed to transform the
output of the decoder into the final reconstruction of X. This function is completely
determined and is independent of the autoencoder. For example, it could be that all
the entries of X are zero or one, that is X ∈ {0, 1}p and we could be at the end of the
neural networks with an output Y whose values are taken in [0, 1]p (for example when



Chapter 1. Statistical Learning with Missing Data 17

a sigmoid function is used for each neuron of the output layer), then we can choose
f(Y(h)) = 1Y(h)≥0.5 in order to recover binary values.

encoder
Z = e(X)

decoder
Y = d(Z)

X

Z

Y X̂ = f(Y)

Figure 1.4: Diagram of an autoencoder with three layers. The latent space Z forms
a lower dimensional representation of the input X. The autoencoder then decodes Z
attempting to reconstruct X from this representation.

When the autoencoder has a single hidden layer (the code), the encoder is linear
and the loss function L is the mean squared error, an undercomplete autoencoder would
learn the same subspace as PCA (Aggarwal et al., 2018). Autoencoders with nonlinear
encoder function can thus learn a more powerful nonlinear dimensionality reduction.

Although several methods for nonlinear dimensionality reduction are known, autoen-
coders allow a lot of flexibility by varying the number of layers and their characteristics
such as the number of units and type of activation functions used in intermediate stages.
Unfortunately, if the encoder and decoder have too much flexibility, the autoencoder
can learn to perform the copying task without extracting useful information of the data
(Aggarwal et al., 2018).

Autoencoders (LeCun, 1987; Bourlard and Kamp, 1988; Hinton and Zemel, 1993) or
regularized versions as sparse autoencoders have been used for dimensionality reduction,
feature learning and compression while denoising autoencoders have been used to recon-
struct good examples from corrupted data. Variational Autoencoders (VAEs) (Kingma
and Welling, 2013) keep an association with classsical autoencoders due to their ar-
chitectural affinity, however as Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), these are generative models which attempt to learn a distribution from
which they can sample new objects that are similar to those in the training data set.
Kingma and Welling (2019), Doersch (2016), and Rocca (2019) give an introducction
to VAEs and Creswell et al. (2018) offer an overview for GANs.

1.5 Mechanisms for Missing Data

Up to now we have assumed that the entries of the data matrix are observed, however
in practice there could be “blank” spaces in the data set. For example, respondents in a
household survey may refuse to report income. In an industrial experiment some results
are missing because of mechanical breakdowns unrelated to the experimental process.
In an opinion survey some individuals may be unable to express a preference for one
candidate over another, etc. Standard statistical methods typically exclude units that



18 1.5. Mechanisms for Missing Data

have missing value for any of the variables involved in an analysis. This strategy is
generally inappropriate, since the investigator is usually interested in making inferences
about the entire target population, rather than the portion of the target population
that would provide responses on all variables in the analysis.

It is also relevant to consider the mechanisms that lead to missing data, and in
particular the question of whether the fact that variables are missing is related to the
underlying values of the variables in the data set. The concept of data-missing mech-
anisms (introduced by Rubin (1976)) establishes the relationship between missingness
and data. It is common to define the data-missing mechanisms through the data matrix.
However, to have a useful definition from a theoretical point of view, we formally define
them using the random variables X and Y . First, let us define a new variable, called
the indicator of missing value,

M(h) =

{
1 if X(h) is missing
0 otherwise

, 1 ≤ h ≤ p

Since we are interested in the relation between the target Y and the predictor variables
X, there is no point to include observations where the target is missing since they would
be uninformative. Hence, we are assuming throughout this work that the response Y has
no missing values which makes unnecessary to define an indicator of missing variable for
Y . Then, the mechanisms are fully characterized by the information of the conditional
distribution of M(h) given (X, Y ). There are three possible data-missing mechanisms.

Missing Completely at Random (MCAR) We say that the variable M(h) ⊥
(X, Y ). In other words, under the MCAR assumption, a coordinate X(h) has some
probability to be missing in the sample and this probability does not depend on the
value of X nor the response variable Y .

Missing at Random (MAR) The variable X(h) is MAR if P
[
M(h) = 1|(X, Y )

]
depends on observed variables but does not depend on missing values. Note that the
probability of missingness might depend on unmeasured variables, but in order to have
an MAR mechanism, these unmeasured variables must be uncorrelated to missing values
in the data set.

Not Missing at Random (NMAR) If the probability of missingness depends on
missing values in the data set, we say that X(h) is NMAR. It might be that X(h) does not
depend directly on missing variables but on unmeasured variables that are correlated
to the missing variables sin the data set.

For example, suppose that p = 2, X(1) is the age, and X(2) is the income. If the
probability for income being missing is the same for all individuals, regardless of their
age or income, then the data is MCAR. If the probability for income being missing
varies according to the age of the respondent but does not vary according to the income
of respondents with the same age, then the data is MAR. If the probability for income
being recorded varies according to income itself, then the data is NMAR. This latter
case is the hardest to deal with analytically, which is unfortunate, since it may be
the most likely case in many applications. As commented by Little and Rubin (2002)
in the controlled missing-data environment of double sampling, the missing data is
MAR. Double sampling refers to survey designs in which initially a sample of units
is selected for obtaining auxiliary information only, and then a subsample is selected



Chapter 1. Statistical Learning with Missing Data 19

in which the variable of interest is observed in addition to the auxiliary information.
The purpose of double sampling is to obtain better estimators by using the relation
between auxiliary variables and the target variable. For interested readers in sampling
we recommend the monograph of Thompson (2012). The example of missingness in an
industrial experiment due to a mechanical breakdown is a case a MAR mechanism. On
the other hand a scenario of censored data is a typical case of an NMAR mechanism.

1.6 Previous Approaches to Handle Missing Data Using
Random Forests

1.6.1 Previous Approaches Implementing Imputation of Missing Val-
ues

Many methods proposed in the literature to handle missing data using random forests
operate through imputation in a recursive way. First, they use the original training
data set Dn to fill the blank spaces in a roughly way. For example, with the median of
the observed values in the variable. We denote this new data set as Dn,1.

The imputed data set Dn,1 is used to build a random forest. Then, some structures of
the forest are exploited, like the so-called proximity matrix, improving the imputation
and resulting in a new data set Dn,2. The procedure follows iteratively until some
stopping rule is applied, for example when there is little change between the imputed
values or when a fix number of iterations is achieved. More formally, let us define

X
(h)
i,` =

{
X

(h)
i if M

(h)
i = 0

X̂
(h)
i,` if M

(h)
i = 1

where X̂
(h)
i,` is the imputation of X

(h)
i at time ` ≥ 1, and let Xi,` =

(
X

(1)
i,` , . . . ,X

(p)
i,`

)
.

In order to properly introduce previous methods that handle missing data through
imputation, we need to define the connectivity between two points in a tree and the
proximity matrix of the forest. Let KΘ,n(X,X′) = 1

X
Θ↔X′

be the indicator that X

is in the same final cell that X′ in the tree designed with Dn and the parameter Θ.
If KΘ,n(X,X′) = 1 we say that X and X′ are connected in the tree mn(·; Θ). The
proximity of two points is the average of times in which they are connected in the forest,
it measures the similarity of the observations in the eyes of the random forest. Formally,
let us define the proximity between X and X′ in the finite forest, mM,n(·; Θ1, . . . ,ΘM ),
as

KM,n(X,X′) =
1

M

M∑
k=1

KΘk,n(X,X′)

To simplify the notation, let KM,`(i, j) be the proximity between Xi and Xj at time `.
That is, KM,`(i, j) is the proximity between Xi and Xj in the random forest constructed

with the data set Dn,`. We also define i
(h)
miss ⊆ {1, . . . , n} as the indexes where X(h) is

missing, and i
(h)
obs = {1, . . . , n} \ i

(h)
miss as the indexes were X(h) is observed.

Breiman’s Approach This method to handle missing values was proposed by

Breiman (2003). If X(h) is a continuous variable, X̂
(h)
j,`+1 is the weighted mean of the

observed values in X(h), where the weights are defined by the proximity matrix of the



20 1.6. Previous Approaches to Handle Missing Data Using Random Forests

previous random forest, that is

X̂
(h)
j,`+1 =

∑
i∈i(h)

obs

KM,`(i, j)X
(h)
i∑

i∈i(h)
obs

KM,`(i, j)
,

` ≥ 1

j ∈ i
(h)
miss

On the other hand, if X(h) is a categorical variable, X̂
(h)
j,`+1 is given by

X̂
(h)
j,`+1 = arg max

x∈X (h)

∑
i∈i(h)

obs

KM,`(i, j)1X
(h)
i =x

,
` ≥ 1

j ∈ i
(h)
miss

That is, X̂
(h)
j,`+1 is the class that maximizes the sum of the proximity considering the

observed values in the class.

Ishioka’s Approach This method, proposed by Ishioka (2013), is an improvement to

outliers of the previous Breiman’s approach. If X(h) is a continuous variable, X̂
(h)
j,`+1 is

the weighted mean of the k nearest neighbors, according to the proximity matrix, over
all the values, both imputed and observed. The k closest values are chosen to make
more robust the method and avoid values which are outliers.

X̂
(h)
j,`+1 =

∑
i∈neighk
i 6=j

KM,`(i, j)X̂
(h)
i,`∑

i∈neighk
i 6=j

KM,`(i, j)
,

` ≥ 1

j ∈ i
(h)
miss

For categorical variables, it is not necessary to see only the k closest values because
the outliers of X will have few attention. Meanwhile the proximity with missing values
should have more attention, specially when the missing rate is high. Hence, if X(h) is a

categorical variable, X̂
(h)
j,`+1 is given by

X̂
(h)
j,`+1 = arg max

x∈X (h)

∑
i 6=j

KM,`(i, j)1 X̂
(h)
i,` =x

,
` ≥ 1

j ∈ i
(h)
miss

MissForest This algorithm, proposed by Stekhoven and Bühlmann (2011), handle
the missing data as a supervised learning problem itself, where the target variable is
the input variable with missing values. The MissForest consists in iteratively building
a random forest from the observed data and the previous imputations to predict the
missing values of the input variables.

1.6.2 Previous Approaches Without Implementing Imputation of
Missing Values

A simple idea to handle missing values is to use all the observations and dropping out
those that have the split variable missing. An obvious problem of this alternative is that
we can finish with a relatively small amount of data very quickly. However, if we have
already constructed the tree and we want to predict a new observation that has missing
values in some features, we can do it with this approach. For prediction, it consists in
dropping the case down the tree as far as it will go, until we cannot longer assign the
observation to one of the child nodes. In the same spirit, for binary trees we can change
the structure of the trees and consider ternary splits instead of binary, where the third
child contains all observations where the feature is missing



Chapter 1. Statistical Learning with Missing Data 21

A straightforward option to handle missing variables in categorical predictors is
creating a new “missing” category. Quinlan (1986) presents an example in which missing
values are introduced into a feature creating an extra “missing” category, then it is
shown that just by creating this new category the apparent gain in information increases.
This example shows that this approach can create the anomalous situation in which a
feature with missing values is preferred over features with all the observations, a result
entirely opposed to common sense. Another simple choice is to send all incomplete
observations to a side chosen by minimizing the error.

Quinlan (1993) propose to assign to each observation in a cell A a weight for each
child node representing the probability that the observation belongs to that node. Then
dividing the observations into fractional objects, in this case the cardinality of each node
should be reinterpreted as the sum of the fractional weights of the observations in the
node. Furthermore, Quinlan (1993) suggests how to use these weights for predicting a
new observation for a classification task. Suppose that the observation has weight w in
cell A which has child nodes A1, . . . , AT and that c1, . . . , cT are the classes associated
to each one of the child nodes, that is

ct ∈ arg max
cj∈Y

1

N(A)

n∑
i=1

1 Yi=cj ,Xi∈At .

Then the weight for the cell At is given by wt = w × pct , the observation explores all
the branches and it is classified in the class with the highest probability.

A popular alternative consists in the so-called surrogate splits (Breiman et al., 1984).
As described by Friedman, Hastie, and Tibshirani (2009), when considering a variable
to split, we use only the observations for which that variables is not missing. Once we
have selected the best cut (ĥ, ẑ) we form a list of surrogate variables and positions of
cuts (h1, z1), . . . , (hs, zs), ĥ 6= h1 6= · · · 6= hs, where the first surrogate split (h1, z1) cor-
responds to the best cut that mimics the split (ĥ, ẑ). The second surrogate split (h2, z2)
corresponds to the second best and so on. The surrogate splits are found by applying

the partition algorithm to predict the two categories {X(ĥ) < ẑ} and {X(ĥ) ≥ ẑ} using
the rest of the variables. An important advantage of surrogate splits is that they can
be used to send observations down the tree either during training or during prediction.
The default behaviour of the rpart library in R is to find surrogate splits during tree
construction, and use them if missing values are found during prediction. This can be
changed by the option usesurrogate = 0 to stop cases as soon as a missing attribute
is encountered. A further choice is what do to if all surrogates are missing: option
usesurrogate = 1 stops whereas usesurrogate = 2 (the default) sends the case in
the majority direction, (see Venables and Ripley, 2002; Therneau, Atkinson, et al.,
1997). Despite its widespread acceptance and application there is only little published
knowledge about its performance. Feelders (1999) and Farhangfar, Kurgan, and Dy
(2008) compare the differences between the use of surrogate splits and multiple imputa-
tion (Rubin, 1996; Rubin, 2004). However these works lack generalizability as modeling
is restricted to classification tasks, categorical data and special simulation schemes.
More recently Hapfelmeier, Hothorn, and Ulm (2012) concluded that there was not a
clear improvement by using fully conditional specification (FCS) also known as impu-
tation with conditional equations (ICE) (Van Buuren et al., 2006). Rieger, Hothorn,
and Strobl, 2010 compare k-nearest neighbor (kNN) imputation and surrogate splits on
different data-missing mechanisms and for classification and regression problems.

The Missing Incorporated in Attributes (MIA) approach was introduced by Twala,
Jones, and Hand (2008). This method uses the missing values to compute the split



22 1.7. A Random Forest Algorithm with Partial Imputations for Missing Entries

and hence, it does not require a different algorithm to propagate the observations with
missing values down the tree. This algorithm keeps the observations with missing values
together and the candidate splits assign the values according to one of the following rules:

• {X(h) < z and M(h) = 1} versus {X(h) ≥ z}

• {X(h) < z} versus {X(h) ≥ z and M(h) = 1}

• {M(h) = 0} versus {M(h) = 1}

Josse et al. (2019) perform a simulation study to compare different methods to
handle missing data using trees and study the consistency of two approaches to estimate
the prediction function with missing values in a framework of multiple imputation,
the use of a universally consistent algorithm and for a Missing At Random (MAR)
mechanism. Furthermore, from simulation studies they concluded that MIA is a good
alternative to handle missing values. Many of these algorithms have been implemented
in R in the package partykit (Hothorn and Zeileis, 2015)

1.7 A Random Forest Algorithm with Partial Imputations
for Missing Entries

Let us emphasize, through a toy example, the issues that one faces with the original
CART criterion in a context of missing values. Consider the space X = [0, 1]2 and two
observations, X1 and X2, that belong to a cell A ⊂ X . We assume that a direction
and location for a cut of A have been chosen and we denote by AL and AR the two
resulting cells, Table 1.1 shows the toy example data and Figure 1.5 an illustration. X1

is represented as a dashed line since X
(1)
1 is missing1 over the interval [0, 1].

X(1) X(2)

X1 NA 0.5
X2 0.75 0.25

A [0.3,0.9] [0.2,0.7]
AL [0.3,0.6] [0.2,0.7]
AR [0.6,0.9] [0.2,0.7]

Table 1.1: Toy example data, we con-
sider a cell A that has been split into
AL and AR. The variable X(1) is miss-
ing in the first observation (denoted as
NA). X(1)

X(2)

0
0

1

1

.X2

X1

A

AL AR

Figure 1.5: Illustration of the example
data, X1 is represented as a dashed line
since X(1) is missing.

It is clear that X2 ∈ AR, however it is not possible to decide, without any further
operation, if X1 ∈ AR or X1 ∈ AL, or even if X1 ∈ A. The CART criterion is then
intractable since the quantities N(A), N(AL), N(AR), ȲA, ȲAL , ȲAR , 1Xi∈A, 1

X
(h)
i <z

and 1
X

(h)
i ≥z

(highlighted in Equation (1.2)) cannot be computed.

1In our illustrations we represent as dashed lines observations with missing values.



Chapter 1. Statistical Learning with Missing Data 23

Ln,A(h, z) =
1

N(A)

n∑
i=1

(
Yi − ȲA

)2
1Xi∈A

− 1

N(A)

n∑
i=1

(
Yi − ȲAL

)2
1

Xi∈A,X
(h)
i <z

− 1

N(A)

n∑
i=1

(
Yi − ȲAR

)2
1

Xi∈A,X
(h)
i ≥z

(1.2)

Proposed Approach: The approach proposed in this thesis keeps the form of the
CART criterion and makes use of adapted imputations for the intractable parts that
allow us to compute the CART criterion. Unlike most of the so-called imputation
techniques, the imputation step is not performed independently of the evaluation of
the CART criterion but is integrated to its later optimization. As a cut is chosen as a
maximiser of the CART criterion in the normal set up, now a couple (cut, imputation)
is chosen at each split in the creation of the random tree. The idea is that, for a cut,
the observations with missing values are assigned to the child node that maximizes our
CART criterion. Then, we move on to the next cell and proceed in the same way until
a stopping rule is achieved. At the end the missing observations would end into a final
node of the tree, which can give an “imputation” of the missing values as a region of
the input space, which in turn would be translated into a “cloud” of possible regions
for the missing values when the random forest is consider. With some extra effort we
believe that is possible to translate these regions into confidence regions for the missing
values.

This algorithm looks similar to other approaches that perform imputation. As an
initialization, we “impute” the missing values with all the possible values of the variable,
then at each split the missing values locations are updated belonging to one of the
child nodes. Despite this similarity, our algorithm does not impute the missing places
with a punctual value, instead each tree “imputes” the missing places with an interval.
Note also, that the algorithm proposed in this work has the advantage of not having
to calculate extra structures like the proximity matrix. Furthermore, we do not need
to change the imputation of the variables, instead we refine them during the descend
process. To avoid confusion in the sequel, we make the subtle difference between the
imputation of the missing values at the start (referred to as in) of an iteration and the
imputation at the end (referred to out) of the iteration. The mathematical formalism
is as follows.

• X̂i,in =
(
X̂

(1)
i,in, . . . , X̂

(p)
i,in

)
is the current imputation of Xi.

• N̂(A) is the number of points assigned to the cell A.

• ŶA is the empirical mean of the response variable Yi such that X̂i,in belongs to
the cell A.

• N̂
(h)
miss(A) =

∑n
i=1 1 X̂i,in∈A,M

(h)
i =1

is the number of observations assigned to the

cell A whose variable X(h) is missing. We denote by N̂miss(A) the number of
observations assigned to A such that at least one coordinate is missing and by
N̂obs(A) the number of observations with no missing values inside the cell A.



24 1.7. A Random Forest Algorithm with Partial Imputations for Missing Entries

• i
(h)
A,miss = {j1, . . . , jN̂(h)

miss(A)
} is the set of indexes of the observations assigned to

the cell A whose variable X(h) is missing.

• For each direction h, letW(h)
A = {0, 1}N̂

(h)
miss(A) be the collection of binary vectors w

with the convention that wk = 1 means that the observation (Xjk , Yjk) is assigned
to the left child node and wk = 0 means that the observation (Xjk , Yjk) is assigned

to the right child node, for all jk ∈ i
(h)
A,miss.

Finally, the variables X
(h)
jk

with jk ∈ i
(h)
A,miss are updated by

X̂
(h)
jk,out

=

{ [
a(h), z

]
if wk = 1[

z, b(h)
]

if wk = 0

while X̂
(h)
i,out = X̂

(h)
i,in for all i ∈ {1, . . . , n}\i(h)

A,miss and every other coordinate is kept

unchanged in the process, so that, for all h′ 6= h, ∀i, X̂
(h′)
i,out = X̂

(h′)
i,in . To keep the

notation fairly simple, we omit the dependence on w in the notation of X̂out even when
the two notions are deeply linked by definition. See Figure 1.6 for an illustration with
p = 2.

A

X̂1,in.
X̂3,in.X̂4,in.

X̂7,in.

X̂2,in

X̂5,in

X̂6,in

AL AR

X̂1,out.
X̂3,out.X̂4,out.

X̂7,out.

X̂2,out

X̂5,out

X̂6,out

Figure 1.6: We perform a cut and assignation of points where the variable is missing.

The empirical CART criterion, on a cell A, in the context of missing values is defined
as

Ln (A, d,w) =
1

N̂(A)

n∑
i=1

(
Yi − ŶA

)2
1

X̂i,in∈A

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAL

)2
1

X̂i,in∈A, a(h)≤X̂(h)
i,out<z

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAR

)2
1

X̂i,in∈A, z≤X̂
(h)
i,out≤b(h)

where ŶAL (respectively ŶAR) is the empirical mean of the Yi such that X̂i,out

belongs to the cell AL (respectively AR).

Definition 3 Empirical CART Criterion with Missing Values



Chapter 1. Statistical Learning with Missing Data 25

For a cell A and an input imputation vector X̂in, the algorithm chooses a cut and

assignation (d̂, ŵ) by maximizing Ln (A, d,w) over CA ×W(h)
A ,

(d̂, ŵ) ∈ arg max
d∈CA
w∈W(h)

A

Ln (A, d,w)

Definition 4 Best Empirical Cut and Assignation

Finally, the “imputed” intervals are updated, which we symbolize by X̂
(ĥ)
i,in ← X̂

(ĥ)
i,out.

Note that, if we know the mechanism of missingness, the possible values for w might
change. For example, assume that there are missing values just in X(1), and its value
is missing when it is bigger than τ , that is, we have right censoring. Also consider that
we know the value of τ , so the missing mechanism is known. if we perform a cut at τ in

X(1), then the only admissible assignation for X̂i,out, where i ∈ i
(h)
A,miss, is to the right

child node.
From a theoretical point of view, we do not longer have observations, hence we

introduce the notions of the input assigned random variable X̂in and output assigned
random variable X̂out. The random variable X̂in corresponds to a prior assignation
whereas X̂out corresponds to the distribution of the assignation after the theoretical cut
is performed. Furthermore, the binary assignations w are translated into probabilities.

Formally, let W be the collection of functions from Y to [0, 1], and X̂in =

(X̂
(1)
in , . . . , X̂

(p)
in ) be the input distribution for the imputation, then X̂

(h)
out|X̂in is defined

(in distribution) as

X̂
(h)
out|X̂in ∈ A =

{
X(h)|X ∈ A if M(h) = 0

B(h) if M(h) = 1

where

B(h) =

{ (
a(h), z

)
if Ber(w(Y )) = 1(

z, b(h)
)

if Ber(w(Y )) = 0
, w ∈ W

Definition 5 Output Assigned Random Variable

The imputation variable w(Y ) is the (random) probability that X̂
(h)
out < z condi-

tionally to M(h) = 1 and Y . Note that X̂in always belongs to a cell A, so the above

definition of X̂
(h)
out|X̂in ∈ A is well defined. We define the theoretical CART over a cut

d = (h, z) and a function w ∈ W as

L?(A, d,w) =V[Y |X̂in ∈ A]− V[Y |X̂(h)
out < z, X̂in ∈ A]P[X̂

(h)
out < z|X̂in ∈ A]

− V[Y |X̂(h)
out ≥ z, X̂in ∈ A]P[X̂

(h)
out ≥ z|X̂in ∈ A]

Definition 6 Theoretical CART Criterion with Missing Values

and the best cut and assignation (d?, w?) is selected by maximizing L? (A, d,w) over
CA ×W, that is



26 1.7. A Random Forest Algorithm with Partial Imputations for Missing Entries

(d?, w?) ∈ arg max
d∈CA
w∈W

L? (A, d,w)

Definition 7 Best Theoretical Cut and Assignation



2
Simulation Study of a Random Forest Algorithm with

Interval Imputation of Missing Entries

This chapter presents a simulation study for our proposed method to handle missing
values in a regression learning task. The previous work of Rieger, Hothorn, and Strobl
(2010) is taken as a basis for this study due to the extensive number of mechanisms of
missingness considered. The study here presented compare our proposal with other 7
methods that handle missing data using random forests. Three of them are taken as
simple baselines, corresponding to median imputation, listwise deletion (observations
with at least one missing value are deleted from the data set), and the elimination of
variables with missing values. Three methods correspond to more elaborate imputation
algorithms corresponding to the Breiman’s method presented in Breiman (2003), the im-
provement suggested by Ishioka (2013) (here presented simply as Ishioka’s method) and
missForest (Stekhoven and Bühlmann, 2011). The last method considered in this study
correspond to Missing Incorporated in Attributes (MIA) (Twala, Jones, and Hand,
2008) which uses the observations with missing values directly in the construction of the
recursive trees. Two of these approaches, corresponding to missForest and MIA could
be considered as state-of-the-art algorithms to handle missing values through random
forests. As Rieger, Hothorn, and Strobl (2010), we compare the methods’ performance
based on their mean squared error (MSE), but also in terms of their bias. Furthermore,
we vary the number of observations with some missing value between 5% of the data
set to 95%, comparing the mentioned methods under all these circumstances.

At the end of this chapter we break the CART criterion used in the construction
of our random forests, giving meaningful interpretation to its components and study-
ing their behavior when the missing values are incorporated accordingly to an MCAR
procedure.

All the simulations were done in R. The package used for the missForest method
was the missForest package. Since no package seems to handle missing values using
the CART criterion and the MIA approach, this procedure as well as our proposal were
completely programmed from scratch. For the rest of the methods we have used the
randomForests package.

2.1 Bibliographic Discussion

Handle missing values through different algorithms has taken attention for the last
decades with several simulation studies comparing the performance of distinct methods.
Feelders (1999) is one of the first to present a result on missing values using recursive

27



28 2.1. Bibliographic Discussion

trees. This work compares the error rate between surrogate splits in a single decision
tree (implemented in the R package rpart (Therneau, Atkinson, et al., 1997)) and
the imputation procedure presented by Schafer (1997) and Schafer and Olsen (1998). It
considers two data sets in the study, given by the so-called Waveform data set (presented
by Breiman et al. (1984)) and the Prima Indian Datasets (available at the UCI machine
learning repository (Dua and Graff, 2017)). The percentage of missing values varies
between 10% and 45% for the first data set, where the missing values are introduced
accordingly to an MCAR mechanism. On the other hand, 10% of the observations
presents missing values in the second data set. Feelders (1999) concludes that the
imputation procedure yields significantly less missclassification error rate.

Surrogate splits were also introduced in the Conditional Inference Forests (Hothorn,
Hornik, and Zeileis, 2006) and compared with k nearest neighbor imputation
(knn−imputation) (Troyanskaya et al., 2001) (implemented in the R package yaImpute

(Crookston and Finley, 2008)) by Rieger, Hothorn, and Strobl (2010) with no clear ad-
vantage for either knn-imputation or surrogate splits. This study considers classification
and regression problems with three different correlation structures and seven schemes
for missing values. The comparison between the approaches is measured through the bi-
nomial log-likelihood for classification and the mean squared error (MSE) for regression.
However, the percentage of missing values is kept constant.

Breiman (2003) proposes an algorithm based on random forests to impute the miss-
ing values making use of the proximity matrix. Ishioka (2013) proposes an improvement
considering not only the observed values in the imputation procedure, but the nearest
neighbors for continuous variables and all the observations for categorical variables.
Ishioka (2013) compares these two approaches and knn-imputation introducing missing
values completely at random in the Spam data set (Dua and Graff, 2017) and con-
sidering missing data rates from 5% to 60%, concluding that the proposed approach
outperforms knn-imputation and the previous method proposed by Breiman (2003).
However, the same author comments that other mechanisms of missingness should be
consider.

Stekhoven and Bühlmann (2011) introduce the missForest algorithm which imputes
the missing values iteratively considering it as a regression problem in which the impu-
tation of the current variable is done using all the other variables. In the simulation
study presented they consider the classification and regression problems in 7 different
data sets where 10%, 20% or 30% of the values are removed completely at random and
the performance is asses using the normalized root mean squared error (Oba et al., 2003)
for continuous variables and falsely classified entries for categorical variables, conclud-
ing that missForest outperforms knn-imputation and multivariate imputation chained
equations (MICE) (Van Buuren et al., 2006). Furthermore, the authors ensure that the
full potential of missForest is deployed when data includes interactions or non-linear
relations between variables of unequal scales and different types.

The work of Farhangfar, Kurgan, and Dy (2008) presents a comparison of classi-
fication methods like support vector machines, k nearest neighbors and C4.5 applied
to missing data with imputation algorithms, including single imputation and MICE.
In total, 15 data sets are considered inducing missing values with up to 50% of the
observations per variable being set missing. The authors conclude that the applica-
tion of MICE leads to better results in most of the instances. Based on the previous
work of Farhangfar, Kurgan, and Dy (2008) and Rieger, Hothorn, and Strobl (2010),
Hapfelmeier, Hothorn, and Ulm (2012) present a comparison study using trees built
with the CART criterion, conditional inference trees and their corresponding random
forests focusing on surrogate splits to handle missing values, moreover the comparison



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 29

also includes the use of MICE to impute missing values. The authors consider 12 real
life data sets, half of them for regression and the other half for classification, 8 of the
data sets already present missing values while in the rest 4 data sets missing values
are induced. Arguing that Rieger, Hothorn, and Strobl (2010) found similar results for
MCAR and MAR mechanisms, the missing values are solely introduced according to an
MCAR mechanism of missingness, considering missing rates between 0% (benchmark)
to 40%. Their results do not show a clear improvement by using multiple imputation,
with MICE even producing inferior results when missing values are limited in number
and are not arbitrary spread across the data. The results also show a similar result
between trees constructed with the CART criterion and conditional inference trees.

The simulation perform by Josse et al. (2019) studies the performance of several
methods to handle missing values in regression tasks. In this study 3 different regression
functions are consider, one of them being linear, one quadratic and the third being the
so-called “friedman1” (Friedman et al., 1991) which has been used as a benchmark
for other authors (Friedman et al., 1991; Breiman, 1996; Rieger, Hothorn, and Strobl,
2010). They consider the MCAR mechanism and censoring, inducing up to 20% of
observations with missing values in the first variable. The authors compare conditional
inference trees, trees and random forests based on the CART criterion and XGBoost
(Chen and Guestrin, 2016). The algorithms to handle missing values include Missing
Incorporated in Attributes (MIA) (Twala, Jones, and Hand, 2008), surrogate splits
for both trees built with the CART criterion and conditional inference trees, block
propagation (only implemented in XGBoost), surrogate splits, mean imputation and EM
imputation (Dempster, Laird, and Rubin, 1977). The performance metric to compare
the methods is the explained variance (i.e. the R2 statistic). The authors clearly favors
the usage of MIA for tree-based methods, while block propagation could also be a good
method.

2.2 Simulation Framework

The regression function in this study is the so-called “friedman1” (Friedman et al., 1991),
which has been used in previous simulation studies (Breiman, 1996; Rieger, Hothorn,
and Strobl, 2010; Josse et al., 2019), given by

m(x) = 10 sin
(
πx(1)x(2)

)
+ 20

(
x(3) − 0.5

)2
+ 10x(4) + 5x(5)

Following the schema presented by Rieger, Hothorn, and Strobl (2010), we simulate X
as a uniformly distributed variable on [0, 1]5 and introduce missing values in X(1),X(3)

and X(4), considering 7 different mechanisms of missingness. For each mechanism of
missingness we create one testing data set and 100 training data sets. Each training
data set contains 200 observations and the testing data set contains 2000 observations.
This amount of data is to have an appropriate approximation to the MSE

EX|Dn [mM,n(X)−m(X)]2

and the bias
EX|Dn [mM,n(X)−m(X)] .

Note that these expressions are conditioned on the training sample Dn and thus they
are random variables which take a different value for each of the 100 training data sets.

In X(1) 20% of data is missing, in X(3) the amount is 10%, and in X(4) there is 20%
again. The fraction of missingness is the same in all the training data sets and remains



30 2.2. Simulation Framework

the same through all the chapter, except for Section 2.4, in which we study the behavior
of the distinct approaches changing the amount of missing values. We do not introduce
missing values in the testing data set. A random forest is built for each one of the
100 training data sets for the 7 mechanisms of missingness and the data sets without
missing values (that are use as benchmark), using M = 50 trees, which has been seen
by simulation to be sufficient to stabilize the error in the case of complete training data
sets. For the remain parameters we use the default values in the regression mode of
the R package randomForests, the parameter mtry is set to bp/3c, we have sampled
without replacement, so an is set to d0.632ne, mtry is set to 1 and nodesize is set to
5. We now describe the mechanisms of missingness.

Missing Completely at Random (MCAR)

We select many locations as desired sampled out of the n observations and replace them
by NA.

Missing at Random

Methods for generating values missing at random are more complicated. The choice of
the locations that are replaced by missing values in the “missing” variable now depends
on the value of a second variable, we call this variables “determining” variables as Rieger,
Hothorn, and Strobl (2010). Therefore, the values of the “determining” variable now
have influence on whether a value in the “missing” variable is missing or not. For X(1)

the “determining” variable is X(2), while X(5) is used as the “determining” variable for
X(3) and X(4).

Creation of ranks (MAR1) The probability for a missing value in a certain loca-
tion in the “missing” variable is computed by dividing the rank of the location in the
“determining” variable by n(n + 1)/2. The locations for NA in the “missing” variable
are then sampled with the resulting probability vector.

Creation of two groups (MAR2) We divide the data set in two groups defined
by the “determining” variable. A value belongs to the first group if the value in the
“determining” variable is greater than or equal to the median of the “determining”
variable, otherwise it belongs to the second group. An observation in the respective
group has a missing value with probability of 0.9 or 0.1 divided by the number of
members in the group. The locations for NA in the “missing” variable are then sampled
with the resulting probability vector.

Dexter truncation (MAR3) The observations with the biggest values in the “de-
termining” variable have the “missing” variable replaced by NA until the desired fraction
of NA has been achieved.

Symmetric truncation (MAR4) This method is similar to the previous one but we
replace by NA the values in the “missing” variable in the observations with the biggest
and the smallest values in the “determining” variable.

Missing depending on Y (DEPY) The missing values depend on the value of the
response, the probability is 0.1 for observations where Y ≥ 13, otherwise it is 0.4. The



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 31

locations for NA in the “missing” variable are then sampled with the resulting probability
vector.

Not Missing at Random

Logit modelling (LOG) In this method the probability for NA no longer depends
on a single “determining” variable but in all the other variables. It is modeled as

logit
(
P
[
M(h) = 1

])
= −0.5 +

5∑
k=1
k 6=h

X(k)

Therefore, the probability of missingness depends on variables with observed values and
variables with missing values.

Figure 2.1 shows the MSE for the complete data set and the seven mechanisms of
missingness. As expected, the case with complete observations tends to have lowest
values for the MSE, moreover we can observe that the MSE tends to have a similar
behavior for all the mechanisms of missingness, reasserting previous observations made
by other authors (Rieger, Hothorn, and Strobl, 2010; Hapfelmeier, Hothorn, and Ulm,
2012) advocating for the study solely of the MCAR mechanism since other mechanisms
of missingness show similar results. Figure 2.2 shows the bias for the same scenarios, the
case with complete observations and the MCAR seem symmetric around zero, that is
the trees tend to be unbiased for this mechanisms of missingness. However, we observe
severe differences for the bias between different mechanisms of missingness. In the
MAR3 scenario we observe that the regression function tends to be underestimated.
Remember that in this case the missing values are introduce in the observations where
the determining variable takes the biggest values, which could explain this bias. For
example we do not observe X(4) in the places where X(5) takes its biggest values,
and by the structure of the regression function this would mean that when the target
variable Y take its biggests values corresponds with observations where X(4) is missing,
which seems to be the most important variable (see Figures 2.20 and 2.21). When the
missing values are introduce by symmetric truncation (MAR4) we observe that the bias
on the estimation tends be center closer to zero. In the case where the observations
are introduced depending on the value of the response Y (DEPY), where observations
with low values of Y have more easily missing values, we observe that the regression
function tends to be overestimated. In MAR1 and MAR2 we observe a less accentuated
underestimation of the regression function, even while bigger values on the determining
value would generate easier missing values, this could be due to a more homogeneous
groups for MAR2. In the NMAR scenario where all the variables influence in similar
way the presence of missing values, we observe again a symmetric behavior around zero.

In Figure 2.3 we present a table with the results obtained by Rieger, Hothorn, and
Strobl (2010), of especial interest is the row s3 which corresponds to the case where the
variables are less correlated in their study. We can observe that our precedure can show
slightly improvements. However, this comparison must be taken with reserve since
Rieger, Hothorn, and Strobl (2010) allowed a few correlation between the variables,
while our predictor variables are independent. Moreover, the amount of computation
for our proposal increases exponentially, since for each cut there are 2nmiss possible
assignations, which makes questionable the apparent gain.



32 2.2. Simulation Framework

Figure 2.1: MSE of the testing data set
for random forests, varying the mecha-
nism of missingness.

Figure 2.2: Bias of the testing data set
for random forests, varying the mecha-
nism of missingness.

Figure 2.3: Figure extracted from Rieger, Hothorn, and Strobl (2010), of special interest
is the row marked as s3 which corresponds to the less correlated variables in their study.
The column “sur” corresponds to the use of surrogate splits while the column “knn”
correspond to k nearest neighbor imputation.



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 33

2.3 Comparison Study

2.3.1 Simple Baselines

As baselines we consider 3 simple methods used in practice to handle missing values,
corresponding to:

• Removing the observations with missing values.

• Removing the columns that have missing values.

• Imputing the missing values with the median of the observations in the corre-
sponding variable.

After we have applied each of these options we construct random forests with the
usual CART criterion. The parameters of the random forests are the same as in our
proposed algorithm, except when we eliminate observations with missing values, in this
case we have established an = d0.632ncompe where ncomp is the number of complete
observations, the rest of the parameters remain the same, also when we remove columns
that have missing values, the mtry = dpcomp/3e.

Figure 2.4 shows the MSE when we decide to eliminate all the incomplete observa-
tions (listwise deletion). In this case the scenarios with missing values use less infor-
mation than the complete one, since at least 20% of the observations has some missing
value, in fact on average just (1 − (1 − 0.1)(1 − 0.2)(1 − 01)) × 100 = 64.8% of the
observations are complete. Figure 2.5 shows the bias eliminating incomplete observa-
tions. We can observe that the tendency to underestimate the regression function for
the MAR1, MAR2 and MAR3 has been intensified as well as the overestimation of the
regression function for the DEPY mechanism of missingness, in fact in this case we did
not observe any point underestimating the bias (all the violin plot is above the zero-
line). Figures 2.6 and 2.7 show the MSE and the bias when we delete the variables with
missing values. Therefore the random forests are built solely with 2 variables, in this
case there is no effect of the mechanism of missingness so the MSE and the bias have
the same behavior for all the mechanisms. Since the trees are unbiased we observe in
the violin plots for the bias of the random forests to be symmetric around zero. How-
ever, in terms of the MSE this method shows a poor performance compared to listwise
elimination or the use of our algorithm. Evidently this method should be avoid, unless
we count with many features with complete information so the elimination of just a few
percentage of the features would not be so harmful. Figures 2.8 and 2.9 show the MSE
and the bias when we impute the missing values with the median of the observed values
for the respective variable. Since the variables with missing values have at least 80% of
their information, this option seems reasonable, which is reflected in the values observed
for both the MSE and the bias. Between the three simple approaches we conclude that
it is the option with the best performance in terms of the MSE.



34 2.3. Comparison Study

Figure 2.4: MSE of the testing data
set for random forests deleting observa-
tions with missing values, varying the
mechanism of missingness.

Figure 2.5: Bias of the testing data
set for random forests deleting observa-
tions with missing values, varying the
mechanism of missingness.

Figure 2.6: MSE of the testing data
set for random forests deleting columns
with missing values, varying the mech-
anism of missingness.

Figure 2.7: Bias of the testing data
set for random forests deleting columns
with missing values, varying the mech-
anism of missingness.



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 35

Figure 2.8: MSE of the testing data set
for random forests imputing with the
median of the observed values, varying
the mechanism of missingness.

Figure 2.9: Bias of the testing data set
for random forests imputing with the
median of the observed values, varying
the mechanism of missingness.

2.3.2 Imputation Approaches Based on Random Forests

In this section we study three different approaches which impute missing values through
random forests. These methods were described in Section 1.6 corresponding to the
algorithms presented by Breiman (2003), Ishioka (2013), and Stekhoven and Bühlmann
(2011), that we have denoted as Breiman’s approach, Ishioka’s approach and missForest
approach, respectively. These algorithms impute the missing values through iterative
improvements, Breiman’s approach and Ishioka’s approach construct a random forest
with the current imputations and use the proximity matrix to update them. Denoting
as KM,`(i, j) the i, j element of this matrix, then Breiman’s updating of the imputation
values is given by the formula

X̂
(h)
j,`+1 =

∑
i∈i(h)

obs

KM,`(i, j)X
(h)
i∑

i∈i(h)
obs

KM,`(i, j)
,

` ≥ 1

j ∈ i
(h)
miss

Instead of considering only the observed values to update the imputation, Ishioka’s
approach considers the k nearest neighbors to improve the imputation, hence the im-
putation is done according to the formula

X̂
(h)
j,`+1 =

∑
i∈neighk
i 6=j

KM,`(i, j)X̂
(h)
i,`∑

i∈neighk
i 6=j

KM,`(i, j)
,

` ≥ 1

j ∈ i
(h)
miss

The missForest algorithm treats the imputation problem as a regression by itself, where
each variable is imputed with the previous imputation of all the others through the
construction of a random forest.

We initialize the algorithms with the median imputation, which accordingly to the
previous observations seems to be an appropriate simple approach in terms of the MSE,
the rest of the parameters correspond to the default values of the package missForest

in R which are set to 10 iterations and the construction of random forests with 100 trees
in each iteration to construct the approximation matrix.



36 2.3. Comparison Study

Figures 2.10, 2.12 and 2.14 show the MSE for these algorithms while Figures 2.11,
2.13 and 2.15 show their bias. In terms of the MSE there is no clear advantage of one
method over the others, except for Ishioka’s approach were it is possible to observe
slightly higher values for some mechanisms of missingness like DEPY or MAR2. These
methods also seem to be more unbiased, since even mechanisms of missingness where
the regression function was underestimated (like MAR3) or overestimated (like DEPY)
appear to be more symmetric around zero for the three methods. The fact that in prac-
tice the mechanism of missingness is unknown makes desirable these kind of methods
that seem to be robust to the missing value generating process in both the MSE and
the bias. Comparing these results with the proposed approach in this work we again do
not observe a clear advantage in a particular method in terms of the MSE, which could
make us wonder if it is really worthy the exhaustive searching for the best assignation
of the missing values.

Figure 2.10: MSE of the testing data
set for random forests using the impu-
tation procedure proposed by Breiman,
varying the mechanism of missingness.

Figure 2.11: Bias of the testing data set
for random forests using the imputation
procedure proposed by Breiman, vary-
ing the mechanism of missingness.



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 37

Figure 2.12: MSE of the testing data
set for random forests using the impu-
tation procedure proposed by Ishioka,
varying the mechanism of missingness.

Figure 2.13: Bias of the testing data set
for random forests using the imputation
procedure proposed by Ishioka, varying
the mechanism of missingness.

Figure 2.14: MSE of the testing data
set for random forests using the miss-
Forest’s imputation, varying the mech-
anism of missingness.

Figure 2.15: Bias of the testing data
set for random forests using the miss-
Forest’s imputation, varying the mech-
anism of missingness.

2.3.3 Missing Incorporated in Attributes

Missing Incorporated in Attributes (MIA) (Twala, Jones, and Hand, 2008) assigns
the observations with missing values all together to the child node that maximize the
CART criterion (or any other criterion consider), the main difference of MIA against our
procedure is that the it can also create cells of the form M(h) = 1 vs M(h) = 0, which
our procedure cannot construct. Nevertheless, due to the similarity with our proposal,
we study MIA in this section. We use the same parameters in this case as those used in
our approach. Figure 2.16 shows the MSE for this algorithm and Figure 2.17 shows its
bias. In terms of the MSE seems to be as robust to the missing mechanisms as the tree-



38 2.3. Comparison Study

based imputation methods studied in the previous section. However, this robustness to
the mechanism of missingness is not presented anymore when the bias is studied, we
can observe for example that the MAR3 and DEPY seem to be highly biased.

Figure 2.16: MSE of the testing data
set for random forests using Missing In-
corporated in Attributes, varying the
mechanism of missingness.

Figure 2.17: Bias of the testing data
set for random forests using Missing In-
corporated in Attributes, varying the
mechanism of missingness.

Figures 2.18 and 2.19 present the average MSE and average Bias for each of the
approaches considered, excluding the method of elimination of features with missing
values. Listwise deletion generates the largest errors and the estimates with more bias
for all the mechanisms. Hence, it could be taken as a bound of the minimum expected
behavior for a method that attempts to estimate the regression function with missing
values. We observe that missForest consistently generates estimators with the lowest
errors regardless of the missing mechanism. We can observe that our proposed method
outperforms MIA, Breiman’s approach and Ishioka’s approach and can achieve similar
errors as missForest (see MAR4, LOG and DEPY). It is worthy to observe that even
a simple approach as imputing with the median can outperform most of the methods
considered or with similar behavior in several mechanisms of missingness, only surpassed
by missForest (see MAR1, MAR2, MAR3, LOG). Moreover it can achieve a similar
performance as a computationally expensive procedure as the one proposed in this work.
In terms of bias, we observe that the algorithms that impute the missing values before
the construction of the random forests tend to generate more unbiased results, while
MIA tends to generate the second more biased estimators (just upper listwise deletion),
our proposal can achieve similar behavior to imputation methods (see MAR1, MAR2,
LOG) or being somewhere between MIA and median imputation (see MAR3, MAR4,
DEPY). For the MCAR case, all the methods considered tend to be unbiased and with
similar MSE, except for missForest and listwise deletion with the lowest and highest
MSE, respectively.



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 39

Figure 2.18: Average MSE of the testing data set for each approach (excluding deletion
of columns with missing values) and each mechanism of missingness. In green there is
listwise deletion, those approaches that implement some imputation in the data set are
in blue(median imputation, Breiman’s approach, Ishioka’s approach and missForest)
and those approaches that handle missing values directly in the learning step are in red
(MIA, our proposal).

Figure 2.19: Average Bias of the testing data set for each approach (excluding deletion
of columns with missing values) and each mechanism of missingness. In green there is
listwise deletion, those approaches that implement some imputation in the data set are
in blue(median imputation, Breiman’s approach, Ishioka’s approach and missForest)
and those approaches that handle missing values directly in the learning step are in red
(MIA, our proposal).



40 2.4. Varying the Rate of Missing Values

2.4 Varying the Rate of Missing Values

Using the 100 training data sets with no missing values, we calculate the importance
of the variables with the R package randomForests, by percentage of increase in mean
squared error and by increase in node purity (Breiman, 2001; Breiman, 2003). Fig-
ures 2.20 and 2.21 show the violin plots for the mean squared error and the increase in
node purity, respectively. We can see a consistently order for the variables with missing
values in both measures of importance, where X(4) is consider more important than
X(1) and X(3). Hence, we decided to change the fraction of missingness in X(4) to vary
between 5%, 10%, 20%, 40%, 60%, 80%, 90% and 95%, without changing the percentage
of missingness for X(1) and X(3). Figure 2.22 shows the MSE , we observe than even
for large fraction of missing values the algorithm estimate the regression function with
little deterioration in terms of the MSE, furthermore the method seems to be robust
to the missing mechanism. Figure 2.23 shows the bias, when the missing values are in-
troduce completely at random (MCAR) or when they are introduce in the observations
corresponding to the biggest and lowest values of the “determining” variable (MAR4),
the estimation appears to be unbiased. The NMAR case where the missing values are
introduced according to a logit model that considers all the other variables also seems
to be create unbiased estimators. For the rest of the mechanisms of missingness it is
clear that the estimations are biased, and this effect tends to increase with the number
of observations with missing values. The scenario were the missing values are intro-
duced in the places where the “determining” variable takes its biggest values (MAR3)
as well as the case were the missing values are introduced depending on the value of the
response Y are the most affected by this biased effect.

Figure 2.20: Importance Variable ac-
cordingly to percentage increase in
MSE.

Figure 2.21: Importance Variable ac-
cordingly to increase in node purity.



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 41

Figure 2.22: MSE of the test data set, varying the percentage of missing values in X(4),
missing values percentage for X(1) and X(3) are set to 20% and 10%, respectively.

Figure 2.23: Bias of the test data set, varying the percentage of missing values in X(4),
missing values percentage for X(1) and X(3) are set to 20% and 10%, respectively.

We have also studied the MSE and bias of the distinct methods considered here,
varying the percentage of missing values for the seven mechanisms of missingness. Ta-
bles 2.1 and 2.2 show the MSE for the MCAR case, and Tables 2.3 and 2.4 show the
bias. The tables with the results for the rest of the mechanisms of missingness are
found in Appendix B. In general, we observe that missForest tends to outperform the
rest of algorithms regardless of the mechanism of missingness and the percentage of
missing values. However, important differences between the performance of the meth-
ods become clear with the increasing percentage of missing values. Especially when
the percentage of observations presenting missing values is over 60% there is an order



42 2.4. Varying the Rate of Missing Values

on the methods, induced by the MSE. In this cases missForest, our proposal and MIA
represent the methods with less MSE. Moreover, we can see the advantage of searching
for the best assignation when the percentage arises between 90% and 95% with our
proposal outperforming all the other algorithms (in the case of DEPY this phenomenon
is achieved even for 80%).

The differences between the mechanisms of missingness are also reflected when we
increase the percentage of missing values. For example, the top three algorithms (miss-
Forest, our approach and MIA) present a MSE between 7.95 and 8.19 when the percent-
age of missingness is 90% and the introduction of missing values is done completely at
random (MCAR). On the hand, for the same percentage of missing values and the same
algorithms we observe a deterioration in terms of the MSE which varies between 9.05
and 12.86 when we consider the DEPY case. Actually , for the DEPY case we consis-
tently see that our approach and missForest outperform the other methods, regardless
of the percentage of missing values, while there is no clear advantage of the rest of the
algorithms over the others (excluding listwise deletion and deletion of variables).

When we include the bias in the study, the differences between methods and data-
missing mechanisms become more evident. For instance, we observe an unbiased be-
havior for the MCAR and the LOG cases, with some deterioration when the percentage
of missing values affects up to 60% of the observations. Conversely, for several mecha-
nisms we observe a severe bias for most of the methods (see MAR1, MAR2, MAR3 and
DEPY). Missing-imputation techniques like Breiman’s approach, Ishioka’s approach or
missForest seem to be the less affected in terms of the bias. While median imputa-
tion, MIA and listwise deletion are the methods getting more biased estimators. For
small values in the percentage of missingness our approach also presents drawbacks
compare to other techniques in terms of the bias, however these issues are overcome as
the percentage of missingness increases.

In conclusion, we observe that the differences between distinct techniques and data-
missing mechanisms become clear when the percentage of observations with some miss-
ing values increases, especially when this value is over 60%. While these differences
are diluted for small values of this percentage (less than 40%). Computer exhaustive
algorithms seem to perform particularly well for large percentage of missing values.
Moreover the behavior of the methods appear to be dependent on the mechanim of
missingness. Moreover, important differences between the algorithms can be observed
when we consider the bias.

Approach 0 5 10 20 40

No Rows 6.06± 0.06 6.85± 0.07 7.05± 0.07 7.47± 0.08 8.38± 0.09

No Columns 6.06± 0.06 19.76± 0.06 19.78± 0.06 19.80± 0.06 19.76± 0.06

Median 6.06± 0.06 6.40± 0.06 6.50± 0.06 6.66± 0.06 7.20± 0.06

Breiman 6.06± 0.06 6.42± 0.06 6.51± 0.06 6.71± 0.06 7.06± 0.07

Ishioka 6.06± 0.06 6.31± 0.06 6.41± 0.06 6.64± 0.06 6.88± 0.06

MissForest 6.06± 0.06 6.43± 0.06 6.42± 0.05 6.45± 0.06 6.53± 0.05

MIA 6.06± 0.06 6.29± 0.06 6.35± 0.06 6.55± 0.06 6.78± 0.06

Proposal 6.06± 0.06 6.47± 0.05 6.53± 0.06 6.55± 0.06 6.78± 0.06

Table 2.1: Average mean squared error and its standard error for the different methods,
considering the MCAR case. The three methods with the lower MSE are filled in blue,
while the three methods with the highest MSE are filled in orange.



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 43

Approach 60 80 90 95

No Rows 9.80± 0.15 12.88± 0.20 17.60± 0.43 22.70± 0.55

No Columns 19.77± 0.06 19.77± 0.06 19.78± 0.06 19.78± 0.06

Median 8.14± 0.09 10.20± 0.14 12.36± 0.22 13.16± 0.22

Breiman 7.53± 0.08 8.83± 0.13 10.63± 0.23 11.96± 0.28

Ishioka 7.32± 0.07 8.03± 0.09 9.17± 0.14 10.45± 0.19

MissForest 6.80± 0.07 7.26± 0.07 8.19± 0.13 9.48± 0.32

MIA 7.15± 0.08 7.75± 0.09 8.79± 0.14 10.08± 0.20

Proposal 6.96± 0.07 7.37± 0.06 7.95± 0.07 8.80± 0.10

Table 2.2: (Cont.). Average mean squared error and its standard error for the different
methods, considering the MCAR case. The three methods with the lower MSE are filled
in blue, while the three methods with the highest MSE are filled in orange.

Approach 0 5 10 20 40

No Rows 0.00± 0.02 −0.01± 0.02 0.02± 0.02 −0.01± 0.03 −0.02± 0.03

No Columns 0.00± 0.02 0.01± 0.03 0.01± 0.03 0.01± 0.03 0.01± 0.03

Median 0.00± 0.02 −0.01± 0.02 −0.01± 0.02 −0.01± 0.02 0.01± 0.03

Breiman 0.00± 0.02 0.01± 0.02 −0.03± 0.02 −0.04± 0.02 −0.05± 0.03

Ishioka 0.00± 0.02 −0.05± 0.02 −0.05± 0.02 −0.04± 0.02 −0.03± 0.02

MissForest 0.00± 0.02 0.00± 0.02 −0.02± 0.02 −0.01± 0.02 −0.01± 0.02

MIA 0.00± 0.02 0.00± 0.02 −0.02± 0.02 0.00± 0.02 0.00± 0.02

Proposal 0.00± 0.02 0.00± 0.02 0.00± 0.02 0.00± 0.02 0.01± 0.02

Table 2.3: Average bias and its standard error for the different methods, considering
the MCAR case. The three more unbiased methods are filled in blue, while the three
more biased methods are filled in orange.

Approach 60 80 90 95

No Rows 0.03± 0.04 −0.02± 0.06 −0.09± 0.11 0.09± 0.18

No Columns 0.00± 0.03 0.00± 0.03 −0.02± 0.03 −0.01± 0.03

Median −0.02± 0.03 −0.05± 0.03 −0.04± 0.05 −0.07± 0.06

Breiman −0.07± 0.03 −0.08± 0.03 −0.10± 0.03 −0.10± 0.04

Ishioka −0.05± 0.03 −0.08± 0.03 −0.09± 0.04 −0.12± 0.05

MissForest −0.01± 0.03 −0.01± 0.04 0.07± 0.05 −0.08± 0.07

MIA −0.01± 0.03 −0.05± 0.03 −0.07± 0.05 −0.09± 0.07

Proposal 0.02± 0.03 −0.06± 0.03 −0.03± 0.04 −0.01± 0.05

Table 2.4: (Cont). Average bias and its standard error for the different methods,
considering the MCAR case. The three more unbiased methods are filled in blue, while
the three more biased methods are filled in orange.



44 2.5. Decomposition of the CART Criterion

2.5 Decomposition of the CART Criterion

Applying elementary algebra (see Appendix A), we can show that our CART criterion
might be written as

Ln (A, d,w) =L1,n(A, d) + L2,n (A, d,w) + L3,n (A, d,w) + L4,n (A, d,w)

where

L1,n(A, d) =
1

N̂(A)

n∑
i=1

(
Yi − ŶA,obs

)2
1

X̂i,in∈A,M
(h)
i =0

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAL,obs

)2
1

X̂i,in∈A, a(h)≤X(h)
i ≤z,M

(h)
i =0

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAR,obs

)2
1

X̂i,in∈A, z≤X
(h)
i ≤b(h),M

(h)
i =0

L2,n(A, d,w) =
1

N̂(A)

n∑
i=1

(
Yi − ŶA,miss

)2
1

X̂i,in∈A,M
(h)
i =1

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAL,miss

)2
1

X̂i,in∈A, a(h)≤X̂(h)
i,out≤z,M

(h)
i =1

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAR,miss

)2
1

X̂i,in∈A, z≤X̂
(h)
i,out≤b(h),M

(h)
i =1

L3,n(A, d,w) =
N̂obs(A)

N̂(A)

(
ŶA,obs − ŶA

)2

−
N̂

(h)
obs (AL)

N̂(A)

(
ŶAL,obs − ŶAL

)2

−
N̂

(h)
obs (AR)

N̂(A)

(
ŶAR,obs − ŶAR

)2

L4,n(A, d,w) =
N̂miss(A)

N̂(A)

(
ŶA,miss − ŶA

)2

−
N̂

(h)
miss(AL)

N̂(A)

(
ŶAL,miss − ŶAL

)2

−
N̂

(h)
miss(AR)

N̂(A)

(
ŶAR,miss − ŶAR

)2

Analogously to equation (1.1) it can be shown that

L1,n(A, d) =

(
N̂

(h)
obs (A)

N̂(A)

)(
N̂

(h)
obs (AL)N̂

(h)
obs (AR)

N̂obs(A)N̂obs(A)

)(
ŶAL,obs − ŶAR,obs

)2
(2.1)



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 45

and

L2,n (A, d,w) =

(
N̂

(h)
miss(A)

N̂(A)

)(
N̂

(h)
miss(AL)N̂

(h)
miss(AR)

N̂miss(A)N̂miss(A)

)(
ŶAL,miss − ŶAR,miss

)2
(2.2)

Let be

• pL = P
[
a(h) ≤ X(h) < z|X ∈ A,M(h) = 0

]
• µA = E[Y |X̂in ∈ A]

• µA,obs = E[Y |X̂in ∈ A,M(h) = 0]

• µA,miss = E[Y |X̂in ∈ A,M(h) = 1]

• µAL = E[Y |X̂in ∈ A, a(h) ≤ X̂out < z] (resp. µAR)

• µAL,obs = E[Y |X̂in ∈ A, a(h) ≤ X̂out < z,M(h) = 0] (resp. µAR,obs)

• µAL,miss = E[Y |X̂in ∈ A, a(h) ≤ X̂out < z,M(h) = 1] (resp. µAR,miss)

then, the theoretical CART criterion can be written as L?(A, d,w) = L?1(A, d) +
L?2(A, d,w) + L?3(A, d,w) + L?4(A, d,w), where

L?1 (A, d) = V
[
Y |X̂in ∈ A, M(h) = 0

]
P
[
M(h) = 0|X̂in ∈ A

]
− V

[
Y |X̂in ∈ A, a(h) ≤ X(h) < z, M(h) = 0

]
P
[
M(h) = 0|X̂in ∈ A

]
pL

− V
[
Y |X̂in ∈ A, z ≤ X(h) ≤ b(h), M(h) = 0

]
P
[
M(h) = 0|X̂in ∈ A

]
(1− pL)

L?2 (A, d,w) = V
[
Y |X̂in ∈ A, M(h) = 1

]
P
[
M(h) = 1|X̂in ∈ A

]
− V

[
Y |X̂in ∈ A, a(h) ≤ X̂

(h)
out < z, M(h) = 1

]
P
[
M(h) = 1|X̂in ∈ A

]
w(Y )

− V
[
Y |X̂in ∈ A, z ≤ X̂

(h)
out ≤ b(h), M(h) = 1

]
P
[
M(h) = 1|X̂in ∈ A

]
(1− w(Y ))

L?3 (A, d,w) = (µA,obs − µA)2 P
[
M(h) = 0|X̂in ∈ A

]
− (µAL,obs − µAL)2 P

[
M(h) = 0|X̂in ∈ A

]
pL

− (µAR,obs − µAR)2 P
[
M(h) = 0|X̂in ∈ A

]
(1− pL)

L?4 (A, d,w) = (µA,miss − µA)2 P
[
M(h) = 1|X̂in ∈ A

]
− (µAL,miss − µAL)2 P

[
M(h) = 1|X̂in ∈ A

]
w(Y )

− (µAR,miss − µAR)2 P
[
M(h) = 1|X̂in ∈ A

]
(1− w(Y ))

We can give an interpretation to L?1, L?2, L?3 and L?4. It is clear that L?1 (resp. L?2)
measures the change of variance of the points where the split variable is observed (miss-
ing) when a cut is performed, while L?3 (resp. L?4) looks to measure the change of the



46 2.5. Decomposition of the CART Criterion

squared bias of the points where the split variable is observed (missing), leading to the
well-known bias-variance trade-off. Thus, when L?3 or L?4 are different from zero we can
conclude that the missing mechanism is introducing a source of bias into the estima-
tion of the regression function. We have observed in our simulations that the MCAR
mechanism seems to not introduce any bias in the estimation of the regression function.
Thus, we expect that L3,n and L4,n would take values near zero. Our simulation shows
results that sustain these observations. However further work is needed and a proof
remains necessary.

Figure 2.24 shows the value of the CART criterion as well as its component parts for
each cell of a tree constructed with a data set where the missing values were introduced
completely at random, 10% for X(1), 20% for X(3) and 10% for X(4). Figure 2.25 shows
the boxplots of these values. For each tree in a random forests we can take the mean
value for these function and create a boxplot with the latter, in this case we would
appreciate the behavior of the component parts for the entire forest form by M = 50
trees, Figure 2.26 shows these boxplots where we can appreciate how L3,n and L4,n take
values near zero. We observe also that L2,n take smaller values than L1,n, however this
could be due to the fact that the amount observations with missing values is less than
the opposite, which would make L1,n to gain more importance in the CART criterion.
We construct a random forest for each one of the 100 data sets with missing values
introduced completely at random, we can take the mean value of L1,n, L2,n, L3,n and
L4,n and construct the corresponding boxplots, which will show the behavior of these
functions for the MCAR mechanisms. These boxplots are presented in Figure 2.27
where we can observe that L3,n and L4,n tends to take values near zero for the MCAR
mechanism, while Figures 2.2 and 2.23 shows that under this mechanism of missingness
the estimations of the regression functions are unbiased.

Figure 2.24: Ln, L1,n, L2,n, L3,n and L4,n in the cells of a tree in a random forest where
an MCAR mechanism was present in the data set.



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 47

Figure 2.25: Ln, L1,n, L2,n, L3,n and
L4,n boxplots for a tree in a random
forest where an MCAR mechanism was
present in the data set.

Figure 2.26: Ln, L1,n, L2,n, L3,n and
L4,n boxplots for a random forest an
MCAR mechanism was present in the
data set, each point represents the
mean value of a tree.

Figure 2.27: Ln, L1,n, L2,n, L3,n and
L4,n boxplots when an MCAR mecha-
nism was present in the data set, each
point represents the mean value of a
random forest.

2.6 Discussion and Future Work

In this chapter we developed a simulation study comparing the approach proposed in
this work with three simple baselines corresponding to the deletion of observations with
missing values, deletion of columns with missing values and single median imputation.
Three imputation algorithms based on random forests were also consider and Missing
Incorporated in Attributes (MIA) as state-of-the-art procedures which have been con-



48 2.6. Discussion and Future Work

sider in other simulation studies (Ishioka, 2013; Stekhoven and Bühlmann, 2011; Twala,
Jones, and Hand, 2008; Josse et al., 2019). The algorithm proposed in this work (like
MIA) handles missing values directly in the loss function consider in the construction of
the trees. Two of the random forest-based imputation algorithms rely on the computa-
tion of extra structures like the so-called proximity matrix and improve the imputation
iteratively. The remaining imputation algorithm corresponds to missForest where the
imputation values of a feature is uploaded using the current imputation of all the other
variables, treating the imputation of the missing values as a regression problem by it-
self, which is a similar strategy for other imputation algorithms like multiple imputation
with chained equations (MICE).

With no surprise, listwise elimination and deletion of variables with missing values
were the approaches with the worst performance, these methods should be avoided
unless the percentage of observations or columns, respectively, with missing values is so
low that they can be deleted without a severe harmful. For the rest of the algorithms
considered in this simulation there is no clear advantage on either imputation-based
methods or approaches that handle missing values directly in the loss function use in
the construction of the trees. All these algorithms seem to be robust to the missing value
generating process, which has also been pointed out as a property of knn-imputation
and surrogate splits (Rieger, Hothorn, and Strobl, 2010). Although, the imputation
based algorithms seem to create estimation of the regression function that are (aprox.)
unbiased for all the scenarios, while the estimation obtained through MIA might suffer
of severe bias.

In the study of the method proposed in this work, we also vary the percentage of
missingness between 5% and 95% in one of the variables, observing that even when the
percentage of missing values is high the algorithm is able to estimate the regression
function with little deterioration in terms of the MSE. An important observation is that
the number of possible assignations for a given cut (z, h) increases extremely rapid with

the number of missing values in that variable since there are 2n
(h)
miss possible assignations,

which turns the algorithm to be prohibited in real applications. A possible solution for
this severe lack is to select at random just a small percentage of all these assignations and
select the assignation that maximizes the loss function between those selected at random.
On the other hand, note that MIA only consider only three different assignations for
the missing values allowing its computation even when there are many observations
with missing values. It is important to observe that a simple baseline like median
imputation shows similar performance to more complicated imputation algorithms or
exhaustive computing methods, which makes us wonder if all the extra effort that it is
required is worthy for such a little improvement.

Note that the mechanisms of missingness as well as the percentage of missing values
considered are not necessarily comparable to real life data. Therefore a further work
would include real life data sets that already contain missing values as other studies
suggests (Hapfelmeier, Hothorn, and Ulm, 2012). A future study could also consider
not only random forests based on the CART criterion but also conditional inference
random forests (Hothorn, Hornik, and Zeileis, 2006; Rieger, Hothorn, and Strobl, 2010;
Josse et al., 2019). Moreover, note that some algorithms to handle missing values like
surrogate splits were not consider in this study, or even methods that are not based
on recursive partitioning like knn-imputation (Troyanskaya et al., 2001), MICE (Van
Buuren et al., 2006) or neural networks-based approaches like autoencoders (Chapter 4
is devoted to the study of the latter).

Finally, in Section 2.5 we decomposed the CART criterion with missing values as
the sum of 4 new functions, giving some intuition on the meaning of these functions



Chapter 2. Simulation Study of a Random Forest Algorithm with Interval Imputation
of Missing Entries 49

and studied their behavior for the MCAR mechanism, however further work is needed
in this direction, moving beyond the MCAR scenario and considering other mechanisms
of missingness.





3
Consistency of a Random Forest Algorithm with Interval

Imputation of Missing Entries for an Additive Model

Despite their use in practice, little is known about the mathematical mechanisms that
drive random forests which has lead to a gap between theory and practice. Part of
this gap can be explained by the bagging mechanism and the splitting criterion. Each
of these processes introduces a source of randomness into the construction of the trees
which makes the random forest algorithm very challenging to study in its full generality.
One way to overcome the theoretical justifications of random forests is through simplified
versions of the original procedure. This is often done by simply ignoring the bagging step
and/or by replacing the splitting criterion with a more elementary splitting protocol.

Zhao (2000) and Cutler and Zhao (2001) introduce the Perfect Ensemble Random
Trees (PERT) which became one of the pioneer works to study the consistency of
ensembles of randomized trees. The criterion use in the PERT algorithm randomly
chooses both the feature to split and the position of the cut. The authors conjecture
that PERT is weakly consistent since all classifiers are almost uncorrelated. Centered
forests is a simplified variant of the random forests algorithm, which assumes (i) no
bootstrap subsampling, (ii) at each node of the trees a feature is uniformly chosen,
and (iii) the split is selected at the midpoint of the values of the selected variable.
The centered forest rule was first formally analyzed by Breiman (2004), and later by
Biau, Devroye, and Lugosi (2008) and Scornet (2016), who proved that the method is
consistent (both for classification and regression) provided p→∞ and n/2p →∞ (the
average number of points at the final nodes). It was pointed out by Lin and Jeon (2006)
that Layered Nearest Neighbors (LNN), for which consistency conditions are met, are
intimately connected to this algorithm. In Purely Random Forests (PURF) at each step,
one of the current nodes and one variable are chosen uniformly at random. The selected
node is then split along the selected variable at a random location inside the limits of
the cell. Biau, Devroye, and Lugosi (2008) study the consistency of PURF and Genuer
(2012) proves that PURF satisfies a minimax rate over Lipschitz functions. Note that
trees constructed in PURF are built in a data-independent manner, that is without
looking at the training sample Dn. Biau (2012) establishes the consistency of a variant
in which at each step all the current final nodes are independently split at the mid-
point of a variable selected at random. Scornet, Biau, and Vert (2015) establishes the
first consistency result for the original random forest algorithm assuming a regression
additive models. Asymptotic normality for Breiman’s infinite forests were proven by
Wager and Athey (2018) simplifying the splitting step and Mentch and Hooker (2016)
proved a similar result for finite forests. On domain-specific adaptations of random

51



52
3.1. Consistency of a Random Forest Algorithm with Missing Entries for an Additive

Model

forests some results on the consistency includes quantile regression (Meinshausen, 2006),
survival analysis (Ishwaran and Kogalur, 2010), online forests (Denil, Matheson, and
Freitas, 2013) and Reinforcement Learning Trees (Zhu, Zeng, and Kosorok, 2015).

3.1 Consistency of a Random Forest Algorithm with
Missing Entries for an Additive Model

In this section we give a consistency result in the context of an additive regression
in presence of missing data accordingly to a missing completely at random (MCAR)
paradigm. Additive regression models, which decompose the regression function as a
sum of univariate functions, are flexible and easy to interpret, providing a good trade-
off between model complexity, calculation time and interpretation. We have taken the
previous work of Scornet, Biau, and Vert (2015) as inspiration for this part, however
the proof of the results differs from theirs in several parts. In particular, we do not
need to make comparisons between trees in the whole structure, but just need to study
the behavior of the final cells at a price of a strong assumption on the number of
points belonging to these nodes. We consider an additive regression model satisfying
the following properties.

Hypothesis 1. The response variable Y has the form

Y =

p∑
j=1

mj(X
(j)) + ε

where X is uniformly distributed over [0, 1]p, ε is an independent Gaussian centered
noise with finite variance σ2 > 0 and each component mj is continuous.

The fact that Y has an additive structure over the predictor variables is important
for the statement of Technical Lemma 1. For instance, we show in Example 1 a case
in which m does not have this structure and the result does not hold anymore. On the
other hand, the proof of Technical Lemma 3 lies on the Gaussian structure of the errors.

Hypothesis 2. The random variables X
(h)
i are not observed (missing) by following an

MCAR mechanism. The probability of missingness p
(h)
n = P

[
M(h) = 1

]
only depends

on the size n of the sample Dn and limn→∞ p
(h)
n = c(h) where 0 < c(h) < 1 is constant

for all h ∈ {1, . . . , p}.

Ideally an assumption allowing p
(h)
n → 1 is desirable. However, the final statement

for the proof of Theorem 1 would not hold as it is, since we were not able to show that
the mean of the observations assigned to the left and the mean of those assigned to
the right converges to the same value. In general, we have used extensively the MCAR
assumption to prove our results.

Assume that Hypothesis 1 and 2 hold. Denote by qn the minimum number of
points in each final cell of the random trees. Then, under the condition qn →∞,
the random forest estimator with missing values is universally consistent in
probability, i.e., for all ξ, ρ > 0 there exists N ∈ N?, such that for all n > N

P
[
|mn(X)−m(X)| ≤ ξ

]
≥ 1− ρ

Theorem 1



Chapter 3. Consistency of a Random Forest Algorithm with Interval Imputation of
Missing Entries for an Additive Model 53

The fact that qn → ∞ implies that the number of points selected in each tree, an
tends to infinity too. Hence, in the sequel, we assume that an → ∞ and omit the
dependence of the trees over an. Moreover, the condition that qn →∞ is sub-optimal,
and we think that with some extra effort the results presented in this work can be
adapted to a more classical (and more powerful) condition like an/tn → ∞. In this
case, it might be possible that not every tree would be consistent but the random forest
would converge to the regression function.

We define, for any subset A ⊂ X , the variation of m within A as

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|

Furthermore, we denote by As(n)(X,Θ) the final cell of the tree built with the random
variable Θ that contains X, where s(n) is the number of cuts necessary to construct the
cell in the tree. After the last step of the tree construction, we end with a collection of
imputed values that corresponds to the last imputed sample (X̂1,out, . . . , X̂n,out). Each
of these vectors are non ambiguously assigned to a specific final cell of the tree. In all
that follows, when we write an imputation X̂ without any specification of in or out, we
refer to the final imputation.

The proof of Theorem 1 relies on Proposition 1 below, which states that the variation
of the regression function within a final cell tree is small for n large enough and allows
to control the error of our predictor. In the sequel, we will abuse of the notation and
will not write the dependence of the cells over X and Θ.

Assume that Hypothesis 1 and 2 hold. Then,

∆(m,As(n))→ 0, almost surely.

Proposition 1

For all x ∈ [0, 1]p, we denote by L?
(
As(n), d, w

)
the theoretical CART criterion over

the cell As(n) evaluated at a cut d ∈ CAs(n)
and assignation w ∈ W. Let (d?s(n), w

?
s(n))

be the optimal couple (cut, assignation) of the cell As(n) for the theoretical criterion

and let (d̂s(n), ŵs(n)) be the optimal couple (cut, assignation) of the cell As(n) for the
empirical criterion.

For ease of understanding we have divided the proof in the next sections. In Sec-
tion 3.2 we enunciate and prove Lemma 1 which establishes that if the theoretical CART
criterion, evaluated in what would be the best cut of the final nodes, tends to zero in
probability then the variation of the regression function tends to zero as well. In Sec-
tion 3.3 we enunciate and prove Lemma 2 which establishes that the empirical CART
criterion, evaluated in what would be the best empirical cut of the final nodes converges
to zero in probability. Finally in Section 3.4 we prove Proposition 1 as a consequence
of Lemmas 1 and 2. To prove Theorem 1 we make use of another regression estimate
m′′n which is shown to be consistent by Proposition 1 and we show that our estimator
and m′′n are asymptotically equivalent which completes the proof of Theorem 1.



54
3.2. Low Values of the Theoretical CART Criterion Implies Minimum Variation of

the Regression Function

3.2 Low Values of the Theoretical CART Criterion Implies
Minimum Variation of the Regression Function

A key part for the statement of Theorem 1 is to show that the regression function
tends to zero on the final cells in the trees built with our approach. In this section we
enunciate Lemma 1 which shows that if the theoretical CART criterion in the final cells,
evaluated at the best theoretical cut, tends to zero in probability then the variation of
the regression function in final cells tends to zero. The proof of Lemma 1 relies on
Technical Lemmas 1 and 2.

Assume that Hypothesis 1 and 2 are satisfied and fix x ∈ [0, 1]p. Then
for all ρ, ξ > 0, there exists N ∈ N? such that, for all n ≥ N if

P
[
L?
(
As(n), d

?
s(n), w

?
s(n)

)
≤ ξ
]
≥ 1− ρ, then

∆(m,As(n)(x))→ 0, almost surely.

Lemma 1

For the proof of Lemma 1, we first need a technical lemma which states that if
L? = 0 for all cuts in a cell, using as a rule of assignment the mechanism of missingness,
then the regression function is constant on that particular cell.

Assume that Hypothesis 1 and 2 are satisfied and for a cell A, L?(A, d, w̃A,d) ≡ 0
for all cuts d = (h, z) ∈ CA, where

w̃A,d = P
[
a(h) ≤ X(h) < z|X ∈ A,M(h) = 1

]
.

Then, m is constant on the cell A.

Technical Lemma 1

Proof of Technical Lemma 1 Without loss of generality, we will assume that the
cut d = (1, z) is performed in the first direction so that h = 1 and that the bounds of
the cell A are a on the left and b on the right. We omit the direction h and simply
note X instead of X(1). Note that if X̂out is assigned to the left child node using w̃A,d,

which does not depend on Y , then X̂out follows the same distribution than X and then
our theoretical CART criterion is similar to the usual one for every cut d = (h, z) ∈ CA,
that is,

L? (A, d, w̃A,d) = P [a ≤ X < z|X ∈ A]P [z ≤ X ≤ b|X ∈ A] (µAL − µAR)2

where the notation µAL (resp. µAR) holds for the conditional expected value of Y given

X̂in ∈ A and a ≤ X < z (resp. z ≤ X ≤ b). Because X is uniformly distributed over
[0, 1]p,

P [a ≤ X < z|X ∈ A] =
z − a
b− a



Chapter 3. Consistency of a Random Forest Algorithm with Interval Imputation of
Missing Entries for an Additive Model 55

and

P [z ≤ X ≤ b|X ∈ A] =
b− z
b− a

Next, we need to understand the distribution of Y conditionally to X̂in ∈ A. This
random variable is a mixture of the values of Y such that X ∈ A and the ones that
where assigned to the cell A through the notion of the variable X̂in. Since the vector
(X̂in, Y ) has a density, we can give a precise meaning to the quantity

m̃(x) = E
[
Y |X̂in = x

]
, (3.1)

for all x ∈ A. By Hypothesis 1, we introduce the notation Y (j) = mj(X
(j))+ ε(j), where

ε(j) ∼ N (0, σ2/p) so that we have Y =
∑p

j=1 Y
(j). Since under the condition X ∈ A,

the random variable X is also uniformly distributed on the cell A, we have that

µAL = E

 p∑
j=1

Y (j)|a ≤ X < z, X̂in ∈ A


=
∑
j≥2

E
[
Y (j)|X̂in ∈ A

]
+ E

[
Y (1)|a ≤ X < z, X̂in ∈ A

]
= K̃ +

1

z − a
Cza

where K̃ does not depend on z, Cyx =
y∫
x
m̃1(t)dt and m̃1(t) =

E
[
Y (1)|X̂in ∈ A, X(1) = t

]
. Analogously, we have that

µAR = K̃ − 1

b− z
Cza +

1

b− z
Cba

Therefore,

L? (A, d, w̃A,d) =

(
z − a
b− a

)(
b− z
b− a

)(
1

z − a
Cza +

1

b− z
Cza −

1

b− z
Cba

)2

=
1

(z − a)(b− z)

(
Cza −

z − a
b− a

Cba

)2

Since L? (h, z, w̃A,d) = 0 by assumption, we obtain that for any a ≤ z ≤ b,

Cza =
z − a
b− a

Cba.

This proves that z 7→ Cza is linear in z and thus, m̃1 is constant on [a, b]. Since the law
of Y (1) is a mixture of distribution such that M (1) = 0 and M (1) = 1, we have that

m̃1(t) = (1− p(1))m1(t) + p(1)E
[
Y (1)|X̂in ∈ A, X(1) = t,M(1) = 1

]



56
3.2. Low Values of the Theoretical CART Criterion Implies Minimum Variation of

the Regression Function

where the second term does not depend on t (since the value is missing). This forces
the function m1 to be constant on the interval [a, b]. And, by additivity, the function
m is constant on A.

If m is non additive then we could have that the CART criterion equals
zero even when m is not constant. For example, consider the function
m(x(1),x(2)) = x(1) + x(2) − 2x(1)x(2), the cell A = [0, 1]p and a cut d = (1, z)
(z ∈ (0, 1)), then

µAL =
1

z

∫ z

0

∫ 1

0
(x(1) + x(2) − 2x(1)x(2))dx(2)dx(1)

=
1

z

∫ z

0
(x(1) +

1

2
− x(1))dx(1)

=
1

2

Note that µAL does not depend on z, similarly we can show that µAR = 1/2
and therefore L? = 0 for all cuts even when m is not constant.

Example 1

We need a second technical lemma which states that any sub-cell within a cell for
which each split gives a small value of L? has also a uniformly small value of the CART
criterion L?.

Assume constructed the imputation X̂in. Let ε > 0, then there exists δ > 0
such that for all cell A if L?(A, d, w̃A,d) ≤ δ for all cut d ∈ CA, then

L?(B, d, w̃A,d) ≤ ε

for all cell B ⊂ A, where both notions of CART criteria are constructed with
the same vector of imputation X̂in.

Technical Lemma 2

Proof of Technical Lemma 2 We first prove the unidimensional case. Without loss
of generality, we can assume that the cell A is the interval [0, 1] and we first consider
the cell B of the form [0, a] with 0 ≤ a ≤ 1. Following the lines of Technical Lemma 1,
we have that

L?(A, z, w̃A,d) =
1

z(1− z)
(
Cz0 − C1

0z
)2

where for all x and y, Cyx =
∫ y
x m̃(t)dt and m̃ is defined as in Equation (3.1). Evaluating

the CART criterion at the value z = a, we have

1

a(1− a)

(
Ca0 − C1

0a
)2 ≤ δ.



Chapter 3. Consistency of a Random Forest Algorithm with Interval Imputation of
Missing Entries for an Additive Model 57

For the cell B, at a cut level 0 < z < a, we have that

L?(B, z, w̃A,d) =
1

z(a− z)

(
Cz0 − Ca0

z

a

)2

=
1

z(a− z)

(
Cz0 − C1

0z + C1
0z − Ca0

z

a

)2

≤ 2

z(a− z)
(
Cz0 − C1

0z
)2

+
2z

a− z

(
C1

0 −
Ca0
a

)2

≤ 2
1− z
a− z

L?(A, z, w̃A,d) +
2z(1− a)

a(a− z)
δ

≤ 2
a(1− z) + z(1− a)

a(a− z)
δ ≤ 2

a(a− z)
δ.

But since the function z 7→ Cz0 is differentiable, we have that Cz0 = Ca0 − (a− z)m̃(a) +
o(a− z) when z → a by a Taylor expansion. This shows that L?(B, z, w̃A,d)→ 0 when
z → a and then there exists a δ0 > 0 such that L?(B, z, w̃A,d) ≤ ε when (a − z) ≤ δ0.
Then, using the previous inequalities for 0 < z < a − δ0, we have that for δ = εδ0a/2,
L?(B, z, w̃A,d) ≤ ε. In the same way, we generalize the previous arguments for A = [0, 1]p

and for a specific type of cell

B = {x ∈ A : x(1) ≤ a}

with 0 < a < 1. The values Czy are then replaced by
∫ z
y

∫ 1
0 · · ·

∫ 1
0 m̃(t)dt1dt2 . . . dtp. The

result can be repeated for the case B = {x ∈ A : x(1) ≥ a}.
For the general case of B ⊂ A we see that any cell B can be obtained by a finite

sequence of B = Bk ⊂ Bk−1 ⊂ . . . B1 ⊂ A of subset constructed by the scheme described
above. This finishes the proof.

Proof of Lemma 1 We will show that ∆(m,As(n)(x)) → 0 a.s. by contradiction.
We assume that with positive probability, there exists a positive constant c > 0 and a
sub-sequence φ(n) of cells As(φ(n)) such that ∆(m,As(φ(n))(x)) > c. This means that in
each set As(φ(n))(x) one can find a pair of elements (xn, yn) such that

|m(xn)−m(yn)| > c.

The sequences (xn)n and (yn)n belong to the compact set [0, 1]p so one can extract a
sub-sequence ψ(n) such that (xn)n and (yn)n converge respectively to two points x and
y. By continuity of m, we have that

|m(x)−m(y)| > c.

At the cost of taking an x′ and y′ close to x and y, satisfying

|m(x′)−m(y′)| > c

2
,

and such that, for n large enough, all the cells As(φ(n)) contain the pair of points x′ and
y′.

By hypothesis, we know that

sup
d∈CAs(φ◦ψ(n))

L?(As(φ◦ψ(n)), d, w̃)→ 0 in probability



58 3.3. The Empirical CART Criterion Converges to Zero in Probability

where we just wrote w̃ for the choice of the assignation given in Technical Lemma 1. So
one can extract a subsequence χ(n) such that the supd L

?(As(φ◦ψ◦χ(n)), d, w̃) converges
to 0 almost surely. For simplicity, we keep denoting n for the sub-sequence φ ◦ψ ◦χ(n)
in the following part of the proof. Lastly, we define the sequence of cells (Ci)i≥1 such
that

Ci =

i⋂
k=1

As(k).

These cells form a non increasing sequence for the inclusion order and for each i, Ci ⊂
As(i). The cells Ci inherit the same vector of imputation as for As(i). We can use
Technical Lemma 2 to get that supd∈CAs(n)

L?(Cn, d, w̃) → 0 a.s. Since the sequence of

cells (Ci)i is a non increasing sequence, there exists a cell, denoted C∞ that is the limit
of the cells Ci when i→∞ in the sense

C∞ =
⋂
i≥1

Ci.

To see that, one can write Ci =
∏
h[a

(h)
i , b

(h)
i ] and take the limits of the sequences (a

(h)
i )i

and (b
(h)
i )i. The objective is to show that there is no other possibility than having

L?(C∞, d, w̃) = 0 for every cut d. For a cell A, the CART criterion L?(A, d, w̃A,d) has a
continuous behavior with respect to A. Indeed, we see that

L? (A, d, w̃A,d) = P
[
a(h) ≤ X(h) < z|X ∈ A

]
P
[
z ≤ X(h) ≤ b(h)|X ∈ A

]
(µAL − µAR)2

which is a product of three terms that are uniformly continuous in A (since m is a
continuous function) with respect to the distance between cells given by ∆(A,B) =

max
{

maxh |x
(h)
A − x

(h)
B |,maxh |y

(h)
A − y

(h)
B |
}

where x
(h)
A and y

(h)
A are defined as A =∏

h[x
(h)
A , y

(h)
A ]. Since Ci → C∞ for the distance ∆, we have that for all ε > 0, for

all i large enough, for all cut d of the final cell C∞,

|L? (Ci, d, w̃)− L? (C∞, d, w̃) | ≤ ε.

But since the L? (Ci, d, w̃) converges almost surely uniformly in d to 0, and ε is arbitrary,
for every cut d inside the valid cuts of C∞, we have that L?(C∞, d, w̃) = 0. But then by
Technical Lemma 1, the function m has to be constant in the cell C∞. But the points x′

and y′ do belong to the cell C∞ since they belong to each of the cells in the intersection.
So m(x′) = m(y′) which contradicts the fact that |m(x′) −m(y′)| > c/2. This proves
that

∆(m,As(n)(x))→ 0 almost surely.

3.3 The Empirical CART Criterion Converges to Zero in
Probability

Since our trees are built using the empirical CART criterion, it is necessary to study
its asymptotic behavior. In particular Lemma 2 establishes that asymptotically the
empirical CART criterion in the final cells, evaluated at the best empirical cut tends
to zero in probability, which is a desirable property and will be used in the proof
of Proposition 1 and Theorem 1. To prove Lemma 2, we are going to make use of
Technical Lemma 3 below which establishes that for cells nearby a final cell of the tree
the empirical CART criterion cannot change too much.



Chapter 3. Consistency of a Random Forest Algorithm with Interval Imputation of
Missing Entries for an Additive Model 59

Assume that Hypothesis 1 and 2 are satisfied and fix x ∈ [0, 1]p . Then for all
ρ, ξ > 0, there exists N ∈ N? such that, for all n ≥ N

P
[
Ln

(
As(n), d̂s(n), ŵs(n)

)
≤ ξ
]
≥ 1− ρ

Lemma 2

Remember that As(n) denotes the final cell of the tree built with the random variable
Θ that contains X, where s(n) is the number of cuts necessary to construct the cell.
Similarly, Ak is the same cell but where only the first k cuts have been performed.

Assume that Hypothesis 1 and 2 hold and fix x ∈ [0, 1]p. For all ρ, ξ > 0 there
exists N ∈ N? such that for all n ≥ N there exists k0(n) ∈ N? such that

P
[∣∣Ln (As(n), d̂s(n), ŵs(n)

)
− Ln

(
Ak, d̂s(n), ŵs(n)

)∣∣ ≤ ξ] ≥ 1− ρ

for all k ≥ k0(n)

Technical Lemma 3

Proof of Technical Lemma 3 Fix α, ρ > 0 and consider the following standard
inequality on a Gaussian tail

P[ε1 ≥ α] ≤ σ

α
√

2π
exp

(
− α2

2σ2

)
then, simple calculations show that, for all n ∈ N?

P

{∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ≥ nα
}
≤ σ

α
√
n

exp

{
−α

2n

2σ2

}
(3.2)

Note that there are at most n(n+1)/2 sets of the form {i : X
(h)
i ∈ [an, bn],M

(h)
i = 0}

for 0 ≤ an < bn ≤ 1. On the other hand, let (Y(1), . . . , Y(n)) be the order vector of Y ,
since missing observations are assigned to the cell using Y and maximizing the CART
criterion, this implies that close values of Y must be assigned to the same cell, thus once

again note that there are at most n(n+1)/2 sets of the form {i : Y(i) ∈ [an, bn],M
(h)
i = 1}

for 0 ≤ an < bn ≤ 1.
We deduce from Equation (3.2) and the union bound, that there exists N1 ∈ N?

such that, with probability at least 1 − ρ, for all n ≥ N1 and all 0 ≤ an < bn ≤ 1

satisfying N̂
(∏p

h=1[a
(h)
n , b

(h)
n ]
)
≥ qn,∣∣∣∣∣ 1

N̂
(∏p

h=1[a
(h)
n , b

(h)
n ]
) n∑
i=1

εi1 X̂i∈A

∣∣∣∣∣ ≤ σn4p

α
√
n

exp

{
−α

2n

2σ2

}
≤ α (3.3)

Furthermore, making use of the same ideas and applying the inequality P[χ2(n) ≥ 5n] ≤
e−n (for interested readers, see Laurent and Massart (2000)), there exists N2 ∈ N? such



60 3.3. The Empirical CART Criterion Converges to Zero in Probability

that, with probability at least 1 − ρ for all n ≥ N2 and all 0 ≤ an < bn ≤ 1 satisfying

N̂
(∏p

h=1[a
(h)
n , b

(h)
n ]
)
≥ qn,

1

N̂
(∏p

h=1[a
(h)
n , b

(h)
n ]
) n∑
i=1

ε2
i1 X̂i∈A ≤ σ̃

2 (3.4)

where σ̃2 is a positive constant, depending only on ρ.
Since (Ak)k is a decreasing sequence of compact sets, for every ξ > 0 there exists k0

such that, for all k ≥ k0

max
(
‖ak − as(n)‖∞, ‖bk − bs(n)‖∞

)
≤ ξ (3.5)

where ak =
(
a

(1)
k , . . . , a

(p)
k

)
∈ [0, 1]p and bk =

(
b
(1)
k , . . . , b

(p)
k

)
∈ [0, 1]p such that

Ak =

p∏
j=1

[
a

(j)
k , b

(j)
k

]
We define as(n) and bs(n) analogously for the cell As(n).

Because X is uniformly distributed in the hypercube [0, 1]p and the missing process
follows an MCAR mechanism we have that, for any cell A, N̂obs(A)/N̂obs([0, 1]p) →
Vol(A) almost surely as n → ∞. Furthermore, for any k ≥ k0(n), Equation (3.5)
implies that Vol(Ak) ≤ (1 + 2ξ)pVol(As(n)). Then there exists N3 ∈ N? such that for all

n ≥ N3, N̂obs(Ak) ≤ (1 + 3ξ)pN̂obs(As(n)), and

N̂obs(Ak \As(n)) ≤ ξ′N̂obs(As(n)) ≤ ξ′N̂obs(Ak) (3.6)

where ξ′ = (1 + 3ξ)p − 1. On the other hand, for any fixed n, the quantity uk =
N̂miss(Ak)− N̂miss(As(n)) converges to 0 almost surely as k →∞. Now taking n ≥ N3

fixed we have that there exists k1(n) such that for all k ≥ k1(n), with probability at
least 1− ρ, we have

N̂(Ak\As(n)) = (N̂obs(Ak) + N̂miss(Ak))− (N̂obs(As(n)) + N̂miss(As(n)))

= N̂obs(Ak \As(n)) + uk

≤ 2ξ′N̂obs(As(n)) (3.7)

where we have used Equation (3.6) and the fact that convergence almost sure implies
convergence in probability. For the rest of the proof, we take k ≥ max{k0(n), k1(n)} and
assume that Equations (3.3), (3.4) and (3.7) are satisfied, which occurs with probability
at least 1− 3ρ for every n > N with N = max{N1, N2, N3}.

Note that Ak \ As(n) is either a final node, contains at least one final node or is
empty (in which case the result holds trivially). Since each final node contains at
least qn points then for qn sufficiently large, using Equation (3.3) we conclude that
|ŶAk | ≤ ‖m‖∞ + α, |ŶAs(n)

| ≤ ‖m‖∞ + α and |ŶAk\As(n)
| ≤ ‖m‖∞ + α. We now use the

following decomposition∣∣Ln (Ak, d̂s(n), ŵs(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)∣∣ ≤ K0 +KL +KR

where the three terms K0, KL and KR are given by

K0 =
∣∣∣ 1

N̂(Ak)

n∑
i=1

(Yi − ŶAk)2
1

X̂i∈Ak −
1

N̂(As(n))

n∑
i=1

(Yi − ŶAs(n)
)2
1

X̂i∈As(n)

∣∣∣,



Chapter 3. Consistency of a Random Forest Algorithm with Interval Imputation of
Missing Entries for an Additive Model 61

KL =
∣∣∣ 1

N̂(Ak)

n∑
i=1

(Yi − ŶAL,k)2
1

X̂i∈Ak,X̂
(ĥ)
i <ẑ

− 1

N̂(As(n))

n∑
i=1

(Yi − ŶAL,s(n)
)2
1

X̂i∈As(n),X̂
(ĥ)
i <ẑ

∣∣∣,

KR =
∣∣∣ 1

N̂(Ak)

n∑
i=1

(Yi − ŶAR,k)2
1

X̂i∈Ak,X̂
(ĥ)
i ≥ẑ

− 1

N̂(As(n))

n∑
i=1

(Yi − ŶAR,s(n)
)2
1

X̂i∈As(n),X̂
(ĥ)
i ≥ẑ

∣∣∣.
We first consider the term K0 that can be upper bounded once again by using a similar
split in K0 ≤ K0,1 +K0,2 +K0,3 where

K0,1 =
∣∣∣ 1

N̂(Ak)

n∑
i=1

(Yi − ŶAk)2
1

X̂i∈As(n)
− 1

N̂(Ak)

n∑
i=1

(Yi − ŶAs(n)
)2
1

X̂i∈As(n)

∣∣∣
K0,2 =

∣∣∣ 1

N̂(Ak)

n∑
i=1

(Yi − ŶAs(n)
)2
1

X̂i∈As(n)
− 1

N̂(As(n))

n∑
i=1

(Yi − ŶAs(n)
)2
1

X̂i∈As(n)

∣∣∣
K0,3 =

∣∣∣ 1

N̂(Ak)

n∑
i=1

(Yi − ŶAk)2
1

X̂i∈Ak\As(n)

∣∣∣
For K0,1, observe that

|ŶAk − ŶAs(n)
| =

∣∣∣ 1

N̂(Ak)

n∑
i=1

Yi1 X̂i∈Ak\As(n)
+

1

N̂(Ak)

n∑
i=1

Yi1 X̂i∈As(n)
− ŶAs(n)

∣∣∣
≤
N̂(Ak \As(n))

N̂(Ak)
|ŶAk\As(n)

− ŶAs(n)
|

≤ 4ξ′(‖m‖∞ + α)

Hence,

K0,1 ≤
2

N̂(Ak)
|ŶAs(n)

− ŶAk |

∣∣∣∣∣
n∑
i=1

(
Yi +

ŶAs(n)
+ ŶAk

2

)
1

X̂i∈As(n)

∣∣∣∣∣
≤ 8ξ′(‖m‖∞ + α)

N̂(Ak)

[∣∣∣N̂(As(n))ŶAs(n)

∣∣∣+

∣∣∣∣∣ ŶAs(n)
+ ŶAk

2
N̂(As(n))

∣∣∣∣∣
]

≤ 16ξ′(‖m‖∞ + α)2



62 3.3. The Empirical CART Criterion Converges to Zero in Probability

For the term K0,2, with the help of Equation (3.4) observe that

K0,2 ≤
N̂(Ak \As(n))

N̂(Ak)

∣∣∣ 1

N̂(As(n))

n∑
i=1

(Yi − ŶAs(n)
)2
1

X̂i∈As(n)

∣∣∣
≤ 2ξ′

∣∣∣ 1

N̂(As(n))

n∑
i=1

Y 2
i 1 X̂i∈As(n)

+ Ŷ 2
As(n)

∣∣∣
≤ 2ξ′

[
(‖m‖∞ + α)2 +

1

N̂(As(n))

n∑
i=1

m2(Xi)1 X̂i∈As(n)

+
∣∣∣ 2

N̂(As(n))

n∑
i=1

m(Xi)εi1 X̂i∈As(n)

∣∣∣+
1

N̂(As(n))

n∑
i=1

ε2
i1 X̂i∈As(n)

]
≤ 2ξ′

[
(‖m‖∞ + α)2 + ‖m‖2∞ + 2‖m‖∞α+ σ̃2

]
Regarding K0,3, observe that

K0,3 ≤ 2ξ′
∣∣∣ 1

N̂(Ak \As(n))

n∑
i=1

(Y 2
i + 2YiŶAk + Ŷ 2

Ak
)1

X̂i∈Ak\As(n)

∣∣∣
≤ 2ξ′

[∣∣∣ 1

N̂(Ak \As(n))

n∑
i=1

(m(Xi) + εi)
2
1

X̂i∈Ak\As(n)

∣∣∣
+

2

N̂(Ak \As(n))
(‖m‖∞ + α)

∣∣∣ n∑
i=1

(m(Xi) + εi)1 X̂i∈Ak\As(n)

∣∣∣
+ (‖m‖∞ + α)2

]

≤ 2ξ′

[
‖m‖2∞ + 2‖m‖∞

∣∣∣ 1

N̂(Ak \As(n))

n∑
i=1

εi1 X̂i∈Ak\As(n)

∣∣∣
+

1

N̂(Ak \As(n))

n∑
i=1

ε2
i1 X̂i∈Ak\As(n)

+ 2(‖m‖∞ + α)2 + (‖m‖∞ + α)2

]
≤ 2ξ′[3(‖m‖∞ + α)2 + ‖m‖2∞ + 2‖m‖∞α+ σ̃2]

Therefore, there exists a universal constant C > 0 such that K0 ≤ Cξ and with similar
arguments we can show that KL ≤ Cξ and KR ≤ Cξ. Which concludes that with
probability at least 1− 3ρ,∣∣Ln (Ak, d̂s(n), ŵs(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)∣∣ ≤ 3Cξ

Proof of Lemma 2 Assume that Hypothesis 1 and 2 are satisfied, fix x ∈ [0, 1]p and
Θ. Then, let us show by contradiction that for all ξ > 0, there exists N ∈ N? such that,
with probability at least 1− ρ for all n ≥ N

Ln

(
As(n), d̂s(n), ŵs(n)

)
≤ ξ.

So, assume that there exists c > 0, 0 < p0 < 1 and a sub-sequence φ(n) such that

Lφ(n)

(
As(φ(n)), d̂s(φ(n)), ŵs(φ(n))

)
> c



Chapter 3. Consistency of a Random Forest Algorithm with Interval Imputation of
Missing Entries for an Additive Model 63

with probability at least p0. To keep the notation simple, we omit to write φ(n) and still
write n for the indexes of the sub-sequence. Additionally, assume that k is sufficiently
large so that the conclusion of Technical Lemma 3 is satisfied, hence∣∣Ln (Ak, d̂s(n), ŵs(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)∣∣ ≤ ξ (3.8)

and Equation (3.5) is satisfied. Note that all the feasible cuts d in Ak must be performed
in Ak \As(n), otherwise d would split As(n) and (Ak)k would not converge to As(n) (see
Figure 3.1 for an illustration in p = 2). From here we conclude that

Ln

(
Ak, d̂s(n), ŵs(n)

)
≤ sup

d∈CAk
∩CAs(n)

w∈WAk

Ln (Ak, d, w) ≤ sup
d∈CAk
w∈WAk

Ln (Ak, d, w) ≤ ξ

Ak

As(n)

≤ δ ≤ δ

≤ δ

≤ δ

d

Figure 3.1: All feasible cuts in Ak must
be performed in the Ak \As(n), like the
cut d in the figure, otherwise the cut
would split As(n).

On the other hand, from Equation (3.8), with probability at least p0, we have

c− ξ ≤ Ln
(
As(n), d̂s(n), ŵs(n)

)
− ξ ≤ Ln

(
Ak, d̂s(n), ŵs(n)

)
Hence, we have, with probability at least p0,

c− Cξ ≤ Ln
(
Ak, d̂s(n), ŵs(n)

)
≤ ξ

which is absurd, since c > 0 is fixed and ξ is arbitrarily small. Thus the result follows.

3.4 Asymptotically the Regression Function has no
Variation on Final Nodes

For a cell A, fix a cut d ∈ CA and consider a function w ∈ W, we need to define
Ln(A, d,w). This is done according to the following procedure, first create a random

vector W of dimension N̂
(h)
miss(A) = Card(i

(h)
A,miss), where Wk = Ber(w(Yjk)) for jk ∈

i
(h)
A,miss, then assign the observations X̂jk to the child nodes according to the random



64 3.4. Asymptotically the Regression Function has no Variation on Final Nodes

vector W . Once we have assigned the observations to the child nodes, we evaluate the
empirical CART criterion Ln considering these assignations. Note that in this case Ln
is a random variable and the assignations are independent to each other so Ln(A, d,w)
is a sum of independent random variables with the same distribution. Hence, by the
strong law of large numbers Ln(A, d,w) → L?(A, d,w) almost surely as n → ∞ for all
cuts d ∈ CA and all functions w ∈ W.

Proof of Proposition 1 With this extra definitions we can prove Proposition 1, that
is, we can prove the almost sure convergence of ∆(m,As(n)) towards 0 by showing that
the theoretical CART criterion of the sequence (As(n))n tends to 0 and making use of
Lemmas 1 and 2. Note that

L?
(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)
= L?

(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d

?
s(n), w

?
s(n)

)
+ Ln

(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)
≤ L?

(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d

?
s(n), w

?
s(n)

)
Where the last inequality comes from noting that Ln

(
As(n), d̂s(n), ŵs(n)

)
≥

Ln
(
As(n), d, w

)
for all cut d ∈ CAs(n)

and assignation w ∈ W(ĥ)
As(n)

, where d̂s(n) =

(ĥ, ẑ). As discussed above, by strong law of large numbers L?
(
As(n), d

?
s(n), w

?
s(n)

)
−

Ln

(
As(n), d

?
s(n), w

?
s(n)

)
→ 0, almost surely. Fix ξ, ρ > 0, for n sufficiently large, we have

L?
(
As(n), d

?
s(n), w

?
s(n)

)
− Ln

(
As(n), d̂s(n), ŵs(n)

)
≤ ξ almost surely.

On the other hand, by Lemma 2, there exists N1 such that for all n ≥ N1, with
probability at least 1− ρ

Ln

(
As(n), d̂s(n), ŵs(n)

)
≤ Cξ

Hence, with the same probability,

L?
(
As(n), d

?
s(n), w

?
s(n)

)
≤ ξ

And by Lemma 1, we conclude that

∆(m,As(n))
a.s.−−→ 0

We are now ready to prove Theorem 1.

Proof of Theorem 1 Let be

mn(X) =
1

N̂(As(n)(X))

n∑
i=1

Yi1 X̂i∈As(n)(X)



Chapter 3. Consistency of a Random Forest Algorithm with Interval Imputation of
Missing Entries for an Additive Model 65

our tree estimator and define two other quantities. The first one takes our partition of
the cells As(n) built up using the imputed variables but considers the local means using
the complete (unseen) observations Xi,

m′n(X) =
1

N(As(n)(X))

n∑
i=1

Yi1Xi∈As(n)(X),

while the second one takes m(Xi) for the prediction and the complete observations Xi,

m′′n(X) =
1

N(As(n)(X))

n∑
i=1

m(Xi)1Xi∈As(n)(X).

By Equation (3.3), we know that for all α, ξ > 0 there exists N ∈ N?, such that for all
n ≥ N ,

P
[
|m′n(X)−m′′n(X)| ≥ α

]
= P

[∣∣∣∣∣ 1

N(As(n)(X))

n∑
i=1

(
Yi −m(Xi)

)
1Xi∈As(n)(X)

∣∣∣∣∣ ≥ α
]

= P

[∣∣∣∣∣ 1

N(As(n)(X))

n∑
i=1

εi1Xi∈As(n)(X)

∣∣∣∣∣
]

≤ ξ

On the other hand, note that m′′n(X) =
∑n

i=1Wn,i(X)m(Xi), where

Wn,i(X) =
1

N(As(n)(X))
1Xi∈As(n)(X)

Then,

E[m′′n(X)−m(X)]2 = E

[
n∑
i=1

Wn,i(X)m(Xi)−m(X)

]2

= E

[
n∑
i=1

√
Wn,i(X)

√
Wn,i(X)(m(Xi)−m(X))

]2

(Applying Cauchy-Schwartz’s inequality)

≤ E

[
n∑
i=1

Wn,i(X)
n∑
i=1

Wn,i(X)(m(Xi)−m(X))2

]

= E

[
n∑
i=1

Wn,i(X)(m(Xi)−m(X))2
1Xi∈As(n)(X)

]

Note that (m(Xi)−m(X))2
1Xi∈As(n)(X) ≤ ∆(m,As(n)(X))2, hence

E[m′′n(X)−m(X)]2 ≤ E
[
∆(m,As(n)(X))2

]
Since ∆(m,As(n)(X)) ≤ ∆(m, [0, 1]p) < ∞, we can use the dominated convergence
theorem, and conclude using Proposition 1, that

lim
n→∞

E[m′′n(X)−m(X)]2 = 0.



66 3.4. Asymptotically the Regression Function has no Variation on Final Nodes

Hence, we have the consistency m′n(X)
P−→ m(X). This means that a (fictive) estimator

built upon the empirical partition but where all the values are observed to compute the

empirical mean step is consistent. We will use this fact to show that mn(X)
P−→ m(X).

First, consider the case in dimension 1. We use the specific case where a cut d and
an assignation w (of the cell As(n)) leaves all the observed points to the left and assigns
all the missing observations to the right. By Lemma 2, we know that for n sufficiently
large Ln(As(n), d, w) ≤ ξ. As already seen in Equation (1.1),

Ln(As(n), d, w) =
N̂obs(As(n))N̂miss(As(n))

N̂(As(n))N̂(As(n))

(
Ŷobs − Ŷmiss

)2

By the convergence of m′n(X), we have, in particular that Ŷobs
P−→ m(X).

Using Hypothesis 2 and the same ideas as in Lemma 2, since p
(h)
n → c(h) < 1,

there exists N ∈ N? such that, with probability at least 1 − ρ for all n ≥ N ,
N̂obs(As(n))/N̂(As(n)) ≥ c, where c > 0 is a constant. On the other hand, if

N̂miss(As(n))/N̂(As(n))
P−→ 0 then, trivially mn(X)

P−→ m′n(X) so let us consider the

case N̂miss(As(n))/N̂(As(n)) ≥ c′, hence with probability at least 1− ρ,(
Ŷobs − Ŷmiss

)2
≤ ξ

cc′
.

This shows that the random variable Ŷobs − Ŷmiss converges to 0 in probability. Since

Ŷobs
P−→ m(X), we obtain that Ŷmiss

P−→ m(X). Finally, using the following formula for
mn(X)

mn(X) =
N̂obs(As(n)(X))

N̂(As(n)(X))
Ŷobs +

N̂miss(As(n)(X))

N̂(As(n)(X))
Ŷmiss

we conclude that mn(X)
P−→ m(X). For dimension bigger than 1, denote again Y (j) =

mj(X
(j)) + ε(j), where ε(j) ∼ N (0, σ2/p) so that we have Y =

∑p
j=1 Y

(j) and define

m(j)
n (X) =

1

N̂(As(n)(X))

n∑
i=1

Y
(j)
i 1

X̂i∈As(n)(X)
.

Consider the cut in the direction 1 which leaves all the observations where M(1) = 0 to
the left and assigns the observations where M(1) = 1 to the right. We denote Ŷobs(1) and

Ŷmiss(1) the respective (on the left and on the right) empirical means. By the arguments

in dimension 1, we have that Ŷobs(1) − Ŷmiss(1) → 0 in probability. By definition,

Ŷobs(1) − Ŷmiss(1) = Ŷ
(1)
obs − Ŷ

(1)
miss +

 p∑
j=2

Ŷ
(j)
obs(1) −

p∑
j=2

Ŷ
(j)
miss(1)

 .

Since the random variable Y (j) (j 6= 1) is independent of the random variable X̂(1)

conditionally to X̂ ∈ As(n), the distributions of the two sums on the right hand side are

equal. Since each random variable Ŷ (j) converges (see Technical Lemma 1) we conclude

that the difference of the two sums converges in probability to 0. Hence, Ŷ
(1)
obs−Ŷ

(1)
miss → 0

in probability. This finally shows that m
(1)
n (X)

P−→ m1(X). Similarly, we show that for

all j ≥ 1, m
(j)
n (X)

P−→ mj(X) and then mn(X)
P−→ m(X) by summation of the p previous

convergences which concludes the proof of the Theorem 1.



4
Use of Autoencoders for the Reconstruction of Missing

Data

According to Costa et al. (2018), neural network-based methods have been increasingly
used for missing data imputation. However, deep learning architectures especially de-
signed for this purpose have not yet been explored to its full potential. In this chapter
we introduce different families of autoencoders and show how they might be used for
imputation goals. We present scenarios where they have been applied successfully, re-
view some drawbacks and give some extensions to overcome these issues. At the end of
the chapter we briefly discuss their use in other fields like recommender systems.

Remember that an autoencoder is a type of neural network that learns a represen-
tation for a data set. Each autoencoder is composed by, at least, three layers: the input
layer, the hidden layer and the output layer, which can be divided into two parts: an
encoder (from the input layer to the hidden layer), and a decoder (from the hidden layer
to the output layer). The encoder maps an input vector x into a hidden representation
z belonging to a latent space, through a nonlinear transformation eθ(x). The resulting
representation z is then mapped back to a vector y which has the same dimension than
x, where y is equal to a nonlinear transformation dφ(z). The training of an autoencoder
consists in optimizing the model parameters θ and φ. Denoising Autoencoders (DAEs)
are a variant of autoencoders that are designed to recover the original input from a noisy
data x̃ which can exist due to data corruption via some noise-additive mechanisms or
by missing data. Another variant of the autoencoders are the Variational Autoencoders
(VAEs) which take advantage of variational inference to create well organized latent
space. This latent space allows the use of VAEs as generative models to not only re-
cover the original input but to create new unseen observations similar to those belonging
to the training data set. By imposing some changes to the loss function use to train
VAEs, we show that they can be used for missing imputation.

4.1 Autoencoders

If we denote respectively as E and D the families of encoders and decoders we are
considering, then the learning process is described simply as minimizing a loss function
over these families, that is

(e?, d?) ∈ arg min
(e,d)∈E×D

L(x, d(e(x)))

67



68 4.1. Autoencoders

As in the case of supervised learning we have a training data set Dn = (x1, . . . ,xn), so
we aim to minimize the empirical risk, that is

(e?, d?) ∈ arg min
(e,d)∈E×D

EDnL(x, d(e(x)))

Accordingly to Goodfellow et al. (2016), nearly all of deep learning is trained with
stochastic gradient descent. Note that the empirical risk takes the form of an additive
loss function, therefore the gradient descent algorithm requires to compute

1

n

n∑
i=1

∇L(xi, d(e(xi)))

As the training set size grows the time to take a single gradient step becomes larger,
to overcome this problem we can sample a minibatch of examples (xj1 , . . . ,xjm) drawn
uniformly from the training set Dn. The minibatch size m is chosen to be small and
is usually held fixed even while the training set size n increases so we can reduce the
time to calculate a step of the gradient descent. This algorithm is known as stochastic
gradient descent.

Artificial neural networks consist of various layers of interconnected neurons powered
by activation functions. Each neuron receives a multidimensional input, the neuron
creates a linear combination of the input and adds a bias value, then this value is passed
to an activation function which calculates the final value given out of the neuron. The
parameters of the neural networks are the weight of the linear combinations and the bias
value for each neuron while an activation function is basically just a simple function that
transforms the inputs into outputs in a certain range of values. There are various types
of activation functions that perform this task in a different manner. These activation
functions introduce non-linear properties into the neural networks allow them to learn
complex patterns in the data. We now define the activation functions that we are going
to use throughout this work, consider x ∈ R, and let w and b the weight for the linear
combination and the bias, these activation functions are:

• Linear activation: f(x) = wTx + b

• Exponential activation: f(x) = exp{wTx + b}

• Sigmoid activation: f(x) = 1

1+e(−wT x+b)

• ReLU activation: f(x) = max{0,wTx + b}

Linear output layers are often used to produce outputs that might take values in
a range of (−∞,∞), for example they can be used to model the mean of a Gaussian
distribution. They represent little difficulty for gradient-based optimization algorithms.
When we desire to have positive values for the output, for example when we like to model
the variance of a distribution, we can use the exponential function. The sigmoid function
is usually used when we are interested to model a probability since the range of values are
between (0, 1). In modern neural networks it is common to use the rectified linear unit
(ReLU) activation function as a way to introduce non-linearity into the network (Jarrett
et al., 2009; Nair and Hinton, 2010; Glorot, Bordes, and Bengio, 2011), becoming the
most popular activation function for neural networks (Ramachandran, Zoph, and Le,
2017). It is not the intention of this work to introduce several activation functions
explored in the literature, but only to describe those that we are going to use. For a
more extensive review on activation functions, their properties and limitations we refer
to Goodfellow et al. (2016).



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 69

4.1.1 Example (MNIST Data Set)

If xj follows a Bernoulli distribution we could choose L(xj , yj) as the negative of the
log-likelihood, being yj the parameter of such distribution and take the average over
these loss functions, that is

L(x,y) =
1

p

p∑
j=1

L(xj , yj) =
1

p

p∑
j=1

−xj log(yj)− (1− xj) log(1− yj)

where y = d(e(x)), and e and d are neural networks trained with stochastic gradient
descent. Note that xj can only take the values 0 or 1, while yj can take any value in the
continuous [0, 1], hence as a final reconstruction of xj we can take x̂j = 1 yj≥0.5. Taking
L(xj , yj) in this way corresponds with the binary cross-entropy whose minimization
coincides with minimizing the Kullback-Leibler divergence and thus attempts to find
the value of yj that best approximates xj (Goodfellow et al., 2016).

We are going to use the MNIST data to illustrate the different ideas throughout
this chapter. The MNIST data sets consist of images of 28×28 gray scale pixels (hence,
each image has 784 pixels). Where each image is a hand-written integer between 0 and
9. The training data set has 60,000 images and the testing data set has 10,000 images.

We have binarized the images, assigning 1 if the value of the pixel is bigger or equal
to 0.5 and assigning 0 otherwise, so we can maximize the Bernoulli log-likelihood for
each pixel. The encoder-decoder structure is symmetric, where e and d are multilayer
perceptrons, e has a hidden layer of 392 neurons followed by another hidden layer of
196 neurons, we use the ReLU activation function for all the hidden layers, except for
the code z where we use a linear activation function. The last layer of the decoder has
784 neurons and a sigmoid activation function. Finally, we reconstruct the binarized
images applying the function x̂j = 1 yj≥0.5. We vary the dimension of the code k to be
2 or 98. Figure 4.11 shows a diagram of the autoencoder.

encoder
z = e(x)

decoder
y = d(z)

x

784
392, relu

196, relu

z

k,
linear

196, relu
392, relu

y

784,
sigmoid

x̂j = 1 yj≥0.5

784

Figure 4.1: Deep autoencoder used in our experiments, we vary the dimension of the
latent space k to be 2 or 98.

1The representation diagrams for autoencoders are based on the work of Petar Veličković which can
be found here: https://github.com/PetarV-/TikZ/tree/master/Variational denoising autoencoder

https://github.com/PetarV-/TikZ/tree/master/Variational denoising autoencoder


70 4.1. Autoencoders

Figures 4.2 and 4.4 show the reconstruction of the first 10 images of the testing data
set (once the autoencoder has learned with the training data set) when the dimension of
the latent space is k = 2 and k = 98, respectively. For comparison, we have performed
PCA, Figure 4.3 and Figure 4.5 show the reconstruction of the same images using the
first 2 principal components and the first 98 principal components, respectively. In
Figure 4.6 and Figure 4.7 we compare the latent space induced by our autoencoder
when k = 2 and the space induced by the first 2 principal components.

Figure 4.2: Reconstruction of the first 10 images of the testing MNIST data set, using
our autoencoder when the dimension of the latent space is k = 2.

Figure 4.3: Reconstruction of the first 10 images of the testing MNIST data set, using
the first 2 principal components.

We observe in Figures 4.2 and 4.3, how the autoencoder is able to reconstruct the
the inputs into images that fairly look as numbers (even while some of them do not
resemble the same number that is shown in the input), even when all the information
has been collapsed into a 2 dimensional latent space. On the other hand the linear
reduction of dimensionality performed by PCA is unable to preserve the structure of
the inputs so it could not reconstruct them into images that look like numbers, in fact
most of the outputs are just “blank” images.

Figure 4.4: Reconstruction of the first 10 images of the testing MNIST data set, using
our autoencoder when the dimension of the latent space is k = 98.



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 71

Figure 4.5: Reconstruction of the first 10 images of the testing MNIST data set, using
the first 98 principal components.

We observe in Figures 4.4 and 4.5 that when we allow the latent space to have 98 di-
mensions, both the autoencoder and PCA are able to preserve important characteristics
of the inputs so they can reconstruct (almost perfectly) the original images.

Figure 4.6: Latent space of the MNIST
data set when the dimension of the la-
tent space is k = 2, the color of each
point correspond to the number repre-
sented in the input image.

Figure 4.7: Induced space by the
first two principal components of the
MNIST data set, the color of each point
correspond to the number represented
in the input image.

We observe in Figures 4.6 and 4.7 how the nonlinearity and the depth introduced in
the architecture of the autoencoder give them an important improvement over the di-
mensionality reduction performed by PCA. These improvements allow the autoencoder
to distinguish the numbers represented by the data set in the latent space while PCA
is unable to distinguish between the different integers represented in the MNIST data
sets.

4.2 Missing Data with Denoising Autoencoders

A denoising autoencoder is an autoencoder that receives a corrupted data point as
its input and is trained to predict the original, uncorrupted data point as its output.
These autoencoders assume that the original training data is clean, although corrupted
instances are expected during the testing phase.

Traditionally, autoencoders minimize some function

L(x, d(e(x)))

where L is a loss function penalizing d(e(x)) for being dissimilar from x. This encourages
d ◦ e to be merely the identity function if they have the capacity to do so. As the name
suggests, denoising autoencoder is an autoencoder having the denoising property. Thus,
a denoising autoencoder minimizes

L(x, d(e(x̃)))



72 4.2. Missing Data with Denoising Autoencoders

where x̃ is a copy of x that has been corrupted. Denoising autoencoders must therefore
undo this corruption rather than simply copy their input. They were first introduced
by Vincent et al. (2008) as a robust procedure to get a good representation of the
input data. The idea is that such a good representation should capture the structure
of the useful features and regularity characteristics of the distribution of its observed
input making possible to reconstruct it from partial observation only. From an input
observation x a corrupted version x̃ is obtained applying a corruption process p(x̃|x).
This corruption process corresponds to noise injection which should be calibrated to the
nature of the input and the phenomenon that makes the testing data set to be corrupted
(see Figure 4.8 for a diagram of a denoising autoencoder with a single hidden layer).
Corrupting the original input x into x̃ by adding small noise or forcing a fraction of
elements in x to some default values makes the model to become more robust and to
avoid overfitting. Some kind of noise that can be added are:

• Gaussian noise: This type of noise can be used for real valued inputs. The noise
is added accordingly with a Gaussian distribution with mean zero and variance λ
which acts as a regularization parameter.

• Masking noise: When we consider binary inputs {0, 1}, we can set a fraction of
points λ to zero.

• Salt-and-pepper noise: Similarly to the masking noise a fraction of points λ are
set to either the maximum or the minimum possible values according to a fair
coin flip.

encoder
z = e(x̃)

decoder
y = d(z)

corruption
p(x̃|x)

x̃x

z

y x̂ = f(y)

Figure 4.8: A shallow denoising autoencoder. The corruption process is usually a
procedure that introduces some noise to the original data. Reconstructing the original
input from a corrupted copy forces the autoencoder to get a robust representation of
the input data in its latent space z.

As pointed out by several authors (Ryu, Kim, and Kim, 2020; Ma et al., 2020;
Gondara and Wang, 2018; Costa et al., 2018; Vincent et al., 2008), denoising autoen-
coders can be used to impute missing values. Instead of adding noise to the input
and use denoising autoencoders, the corruption process replaces the missing values on
the data with a predetermined value. If we denote by m the missing pattern, then
the corruption process p(x̃|x,m) represents the conditional distribution over corrupted



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 73

samples given the original data sample and the missing pattern. Figure 4.9 shows a
diagram for the use of a denoising autoencoder with missing data. During the training
of a denoising autoencoder to impute missing values it is important to count with com-
plete observations and to know the missing pattern and the missing mechanism which
can be inferred from the matrix of missingness (Ma et al., 2020), an improper choice of
the mechanism of missingness can bias the model (Costa et al., 2018). Then, we can
replicate this mechanism in the complete observations so we can try to reconstruct the
original input with the denoising autoencoder.

encoder
z = e(x)

decoder
y = d(z)

corruption
p(x̃|x,m)

x̃

x

m

z

y x̂ = f(y)

Figure 4.9: A shallow denoising autoencoder used to impute missing data. The corrup-
tion process corresponds to the replacement of the missing values with some predeter-
mined value.

4.2.1 Example (MNIST Data Set, Continuation)

Continuing with our example, we introduce missing values to the MNIST data set.
We vary the number of pixels with missing values to be 157 pixels or 706, which are
approximately 20% and 90% of the image, respectively, where the pixels to be missing
are selected completely at random. Remember that previously we have binarized the
images, so each pixel takes the values 0 or 1, those pixels whose value is missing are set
as 0.5, so the corruption process is given as

x̃j |x,m =


1 if xj = 1 and mj = 0
0 if xj = 0 and mj = 0
0.5 if mj = 1

(4.1)

The architecture of the autoencoder is the same as before, that is, we use the same
number of layers and neurons and the same activation functions (Figure 4.1 shows a



74 4.2. Missing Data with Denoising Autoencoders

diagram of the autoencoder) and vary the dimension k of the latent space to be 2 or
98, as before. Figures 4.10 and 4.11 show the reconstruction of the first 10 images of
the testing MNIST data set when there are 157 pixels with missing values, k = 2 and
k = 98, respectively. The reconstruction of the same images when 706 pixels are missing
are shown in Figures 4.12 and 4.13, k = 2 and k = 98, respectively. The original image
is shown at the top, the image with missing values is shown in the middle and the
reconstruction done by the denoising autoencoder is shown at the bottom. The latent
space when k = 2 is similar to the one shown in Figure 4.6 and is omitted.

Figure 4.10: Reconstruction of the first 10 images of the test MNIST data set, using our
denoising autoencoder when the dimension of the latent space is k = 2 and 157 pixels
have missing values.

Figure 4.11: Reconstruction of the first 10 images of the test MNIST data set, using
our denoising autoencoder when the dimension of the latent space is k = 98 and 157
pixels have missing values.

Figure 4.12: Reconstruction of the first 10 images of the test MNIST data set, using our
denoising autoencoder when the dimension of the latent space is k = 2 and 704 pixels
have missing values.



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 75

Figure 4.13: Reconstruction of the first 10 images of the test MNIST data set, using
our denoising autoencoder when the dimension of the latent space is k = 98 and 704
pixels have missing values.

4.2.2 Extensions of Denoising Autoencoders

Denoising autoencoders were designed to learn a good representation of the data, rather
than performing imputation of missing values which, according to Ma et al. (2020), leads
to suboptimal results when we apply directly denoising autoencoders for imputation of
missing values since the loss function considers to recover the entire original input
instead of recover the missing values only. Therefore the same authors consider a loss
function that only attempts to recover the missing values

EDn [L(m ◦ x, d(e(m ◦ x̃)))]

where ◦ indicates element-wise product. Ryu, Kim, and Kim (2020) compares DAEs,
VAEs (this kind of autoencoders are defined and studied in Sections 4.4 and 4.5) and
Wasserstein Autoencoders (Tolstikhin et al., 2017) in an imputation study with time
series data, concluding that the proposed denoising autoencoder shows lower imputa-
tion errors compared to the other two autoencoders. Furthermore, in the same spirit of
getting more attention to the imputation of the missing values rather than the recon-
struction of the whole input, their loss function is of the form

EDn [αL(m ◦ x, d(e(m ◦ x̃))) + (1− α)L(m̃ ◦ x, d(e(m̃ ◦ x̃)))]

where m̃ is the complement of m, that is m̃j = 1 if xj is observed and zero otherwise,
large values of α would encourage the autoencoder to give more importance to the
imputation of the missing values rather than the reconstruction of the full input (the
authors consider α = 0.8).

A Stacked Denoising Autoencoder (SDAE) (Vincent et al., 2010) is a special case of
denoising autoencoder in which the activation of an input is corrupted before passing
to next hidden layer which in turn tries to reconstruct the original activation value of
the previous layer. Costa et al. (2018) perform a comparison study between SDAEs and
other techniques to impute like Support Vector Machine (SVM) imputation (Mallinson
and Gammerman, 2003), Multiple Imputation by Chained Equations (MICE) (Van Bu-
uren et al., 2006; Azur et al., 2011) , k Nearest Neighbors (kNN) imputation (for more
details on kNN see Troyanskaya et al. (2001), Xia et al. (2017), and Garćıa-Laencina,
Sancho-Gómez, and Figueiras-Vidal (2013)), Mean imputation or EM (Dempster, Laird,
and Rubin, 1977) imputation, concluding that SVM imputation ensures the best perfor-
mance while MICE perform better in terms of imputation quality. Gondara and Wang
(2018) also studied SDAEs for multiple imputation compared with MICE on MCAR
and MNAR mechanisms, using sum of Root Mean Squared Error as the performance



76 4.2. Missing Data with Denoising Autoencoders

metric. In a second work Gondara and Wang (2017) propose a SDAE model to handle
imputation in healthcare data. The simulation results showed advantages on the use of
SDAE for imputation. Beaulieu-Jones and Moore (2017) use SDAE to impute data in
electronic health records, comparing this approach to other five imputation strategies
(including mean imputation, knn-imputation and MICE). The results show that the
proposed SDA approach outperforms the other methods. Ning et al. (2017) proposed
an algorithm based on SDAE which is compared to other two imputation algorithms
based on the knn algorithm, showing that the proposed imputation method outperforms
the ones used for comparison. The above works show that deep learning techniques are
promising in the field of imputation.

The uses of denoising autoencoders are not limited on denoising images or missing
imputation, but also as a procedure to initialize a neural network (Vincent et al., 2008;
Xie, Xu, and Chen, 2012; Erhan et al., 2010), which can be then trained to accomplish
a supervised learning task. The idea is that a neural network that can extract a good
representation of the input data must be also able to accomplish a supervised task. In
this case the architecture of the neural network use for the supervised task is copied
in the encoder, whose trained parameters are used as initial values to train the neural
network in the supervised learning task. In this spirit, Xie, Xu, and Chen (2012)
uses Stacked Sparse Denoising Autoencoders (SSDAE) as a way to initialize a second
denoising autoencoder use to denoise images (their final goal). To induce this sparsity
in the denoising autoencoders they introduce a sparsity-inducing term, so their loss
function takes the form

EDnL(x, d(e(x̃))) + βDKL(ρ̂||ρ) +
λ

2
(‖W‖2F + ‖W′‖2F )

where

DKL(ρ̂||ρ) =

|ρ̂|∑
j

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

, ρ̂ = EDnp(x̃|x)

W and W′ are the weights of the encoder and the decoder (resp.), and β, λ, ρ are hyper-
parameters defined by the user. According to the authors, sparse variants of deep neural
networks are expected to perform well in vision problems because they have a similar
structure to human visual cortex (see also Lee, Ekanadham, and Ng (2007)).

According to Bengio et al. (2013) the first ideas about the probabilistic interpre-
tation of autoencoders were proposed by Ranzato, Boureau, and LeCun (2008) while
Vincent (2011) gave the first formal probabilistic interpretation of regularized autoen-
coders. Alain and Bengio (2014) generalized the result of Vincent (2011) showing that
when a denoising autoencoder is trained with small Gaussian noise and squared error
loss, it estimates the score (derivative of the log-likelihood) of the underlying data-
generating distribution. This led to proposals for sampling from the implicitly learned
density function (see for example Rifai et al. (2012)). Bengio et al. (2013) showed that if
an observation x is corrupted using the conditional distribution p(x̃|x) then the denois-
ing autoencoder estimates the reverse conditional p(x|x̃), and showed that it is possible
to recover a consistent estimator of p(x) by iterative sampling through a Markov chain
between p(x|x̃) and p(x̃|x). A breakthrough on generative models came with the arrival
of variational autoencoders (Kingma and Welling, 2013) which explicitly model the en-
coder and decoder as conditional densities and train them making use of the variational
inference procedure, the subject of the next section.



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 77

4.3 Variational Inference

Variational inference is a method for approximating probability densities (Jordan et
al., 1999). The main idea is to use optimization, assume that we have a joint density
of latent variables z and observed variables x, p(x, z). The inference problem is to
compute the conditional density of the latent variables given the observations p(z|x),
this conditional density can be written as

p(z|x) =
p(x, z)

p(x)

The denominator is the density of the observations, also called the evidence, which can
be calculated marginalizing out the latent variables from the joint density,

p(x) =

∫
p(x, z)dz =

∫
p(z)p(x|z)dz

where p(z) is the prior density for the latent variables and p(x|z) is the likelihood
of the observations. However, it is quite common that this integral is intractable for
moderately complicated likelihoods. Making intractable to produce inferences from the
posterior density p(z|x). The idea of variational inference is to propose a family Q of
densities over the latent variable and then find the member of the family that minimizes
the Kullback-Leibler (KL) divergence to the exact posterior,

q? ∈ arg min
q∈Q

DKL(q(z|x)||p(z|x)). (4.2)

Thus, variational inference turns the inference problem of the posterior distribution into
an optimization problem. The complexity of the family considered Q determines the
complexity of the optimization, being more difficult to optimize over a complex family
than a simple one. Hence, Q is chosen to be flexible enough to have a member close to
p(z|x), but at the same time simple enough to allow an efficient optimization.

Equation (4.2) cannot be computed since it requires to calculate the evidence
log p(x), which we have assume to be intractable. Fortunately, we can derive an equiva-
lent expression which enables us to solve the optimization problem. To see this, expand
the KL divergence presented in Equation (4.2),

DKL(q(z|x)||p(z|x)) = Ez∼q [log q(z|x)]− Ez∼q [log p(z|x)]

= Ez∼q [log q(z|x)]− Ez∼q [log p(x, z)] + log p(x)

Let us define the evidence lower bound as

ELBO(q) = Ez∼q [log p(x, z)]− Ez∼q [log q(z|x)] (4.3)

Definition 8 Evidence Lower Bound (ELBO)

then an equivalent optimization problem to Equation (4.2) is

q? ∈ arg max
q∈Q

ELBO(q)

Furthermore, note that log p(x) might be written as

log p(x) = DKL(q(z|x)||p(z|x)) + ELBO(q) (4.4)



78 4.4. Variational Autoencoders

and since DKL(q(z|x)||p(z|x)) ≥ 0 then

log p(x) ≥ ELBO(q)

so as its name suggests the ELBO is a lower bound for the evidence.
Applying simple algebra to Equation (4.3) we can rearrange ELBO(q) to get a more

convenient form

ELBO(q) = Ez∼q [log p(x, z)]− Ez∼q [log q(z|x)]

= Ez∼q [log p(x|z)] + Ez∼q [log p(z)]− Ez∼q [log q(z|x)]

= Ez∼q [log p(x|z)]−DKL(q(z|x)||p(z)) (4.5)

Note from Equation (4.5) that mazimizing ELBO(q) implies a trade-off between
maximizing the expected log-likelihood and at the same time minimizing the KL di-
vergence between the approximate posterior q(z) and the prior p(z). This is a well-
known trade-off that appears naturally in Bayesian inference problems and expresses
the balance that needs to be found between the confidence we have in the data and the
confidence we have in the prior.

Consider again Equation (4.4), so we can write the ELBO as

ELBO(q) = log p(x)−DKL(q(z|x)||p(z|x))

while this expression cannot be computed, it is useful from a theoretical perspective. For
example, it is known that the variational inference tends to underestimate the variance
of the posterior density, this is (at least partially) for considering the KL divergence,
since this divergence penalizes placing mass in q on areas where the posterior has little
mass, but penalizes less the inverse. However, some empirical research have shown that
variational inference does not necessarily suffer in accuracy (Blei, Jordan, et al., 2006;
Braun and McAuliffe, 2010; Kucukelbir et al., 2017).

When we consider the KL divergence as the base of the optimization the variational
inference is also called Kullback-Leibler variational inference (Barber, 2012). However,
we can use different procedures to approximate the density through optimization, as
it is emphasized by Wainwright and Jordan (2008). Some of these procedures could
be the expectation propagation (Minka, 2001), belief propagation (Yedidia, Freeman,
and Weiss, 2001), Laplace approximation (see, for example, Barber (2012)) or even
developed divergences based on lower bounds that are tighter than the ELBO (Leisink
and Kappen, 2001), as the variational cumulant expansion (Barber and Laar, 1999) or
generalizations of the KL divergence as the α−divergence which, in theory, provides
better results than the KL divergence (Minka et al., 2005).

Note that the first term on the right hand side of Equation (4.3) corresponds
to the expected complete log likelihood which is optimized by the EM algorithm
(Dempster, Laird, and Rubin, 1977) when q(z) = p(z|x), that is Q(θ|θ(t)) =
Ez∼p(z|x;θ(t)) [log p(x, z; θ)]. This observation has led to another variety of variational
inference algorithms (Waterhouse, MacKay, and Robinson, 1996; MacKay, 1997). Fi-
nally for further reading on variational inference, its comparison with MCMC, extensions
and research on the field, applications, and open problems we recommend the review
presented by Blei, Kucukelbir, and McAuliffe (2017) and the references therein.

4.4 Variational Autoencoders

Depending on the application on hand, after training an autoencoder it could be not
necessary to use both the encoder and the decoder portions. For example, when the



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 79

goal is dimensionality reduction, we can use the encoder in order to create reduced
representations of the data. The reconstruction of the decoder might not be required.

Traditional autoencoders are designed to encode and decode with as few loss as
possible, no matter how the latent space is organized. Thus, traditional autoencoders
could take advantage of any overfitting possibility to achieve this task. In order to be
able to use the decoder of our autoencoder for generative purposes, we have to be sure
that the latent space is regular enough. One way to do this is adding a regularization
term to the loss function.

A variational autoencoder (VAE) emphasizes the role of the decoder portion of
the network as a creative generator of new data points. In order to have an efficient
generative process it is important than the code space is well organized. The regularity
that is expected from the latent space in order to make the generative process possible
can be expressed through two main properties: continuity (two close points in the latent
space should not give two completely different contents once decoded) and completeness
(a point sampled from the latent space should give meaningful content once decoded).

Equation (4.5) is the core and loss function of a VAE since q(z|x) is encoding x into
z and p(x|z) is decoding it to reconstruct x. We recognize Ez∼q [log p(x|z)] as the recon-
struction log-likelihood found in other autoencoders, while DKL(q(z|x)||p(z)) forces the
distribution returned by the encoder to be close to the prior p(z) and thus regularizes
the latent space. Therefore, the first term on the right hand side of Equation (4.5) is
known as the “reconstruction term” and the second term is known as the “regularization
term”. Figures 4.19 and 4.20 show the latent space created by a traditional autoencoder
and a VAE, respectively. We can observe how the VAE has introduced regularity to the
latent space.

4.4.1 Bernoulli Likelihood

Assume that z ∼ Nk(0, I), that x|z = (x1|z, . . . , xp|z) where xj |z
iid∼ Ber(dj(z)) and d =

(d1, . . . , dp) belongs to a family of functions D. Let us consider, for now, that d is well
defined and fixed. We are going to approximate p(z|x) by a Gaussian distribution q(z|x),
whose mean and covariance matrix are defined by two functions of x, µ(x) and σ(x),
that is q(z|x) ≡ Nk(µ(x), σ(x)). Furthermore, let us assume that the covariance matrix
of q(z|x) is diagonal, so σ(x) = diag(σ1(x), . . . , σk(x)) and µ(x) = (µ1(x), . . . , µk(x)).
These two functions belong, respectively, to families of functions M and S.

Note that

log p(x|z) =

p∑
j=1

xj log(dj(z)) + (1− xj) log(1− dj(z))

Therefore, from Equation (4.5), we see that maximizing the ELBO over q(z|x) is equiv-
alent to

q? ∈ arg max
q∈Q

Ez∼q

 p∑
j=1

xj log(dj(z)) + (1− xj) log(1− dj(z))


−DKL(q(z|x)||p(z))

(4.6)

Now, the second term on the criterion to maximize in (4.6) is the KL divergence between



80 4.4. Variational Autoencoders

two Gaussian distributions, which can be computed in closed form (Doersch, 2016) as

DKL(Nk(µ0,Σ0)||Nk(µ1,Σ1)) =
1

2

{
tr
(
Σ−1

1 Σ0

)
+ (µ1 − µ0)TΣT

1 (µ1 − µ0)

− k + log

(
det(Σ1)

det(Σ0)

)}

In our case, this simplifies to

DKL(q(z|x)||p(z)) =
1

2

{
tr(σ(x)) + ‖µ(x)‖2 − k − log det(σ(x))

}
=

1

2

k∑
κ=1

[
σκ(x) + µ2

κ(x)− log σκ(x)
]
− k

2
(4.7)

Substituting Equation (4.7) into (4.6), we get that maximizing the ELBO over q is
equivalent to

(µ?, σ?) ∈ arg max
(µ,σ)∈M×S

Ez∼q

 p∑
j=1

xj log(dj(z)) + (1− xj) log(1− dj(z))


− 1

2

k∑
κ=1

[
σκ(x) + µ2

κ(x)− log σκ(x)
] (4.8)

Up to now, we have assumed the function d known and fixed. In practice, however,
the likelihood is not completely known and it is suitable to be maximized through its
unknown parameters. This means that d is not fixed and needs to be learned. Thus,
the ELBO is a function of both q(z|x) and p(x|z) as

ELBO(q(z|x), p(x|z)) = Ez∼q [log p(x|z)]−DKL(q(z|x)||p(z)) (4.9)

It is straightforward from Equation (4.8) that maximizing the ELBO over q(z|x) and
p(x|z) is equivalent to

(d?, µ?, σ?) ∈ arg max
(d,µ,σ)∈D×M×S

Ez∼q

 p∑
j=1

xj log(dj(z)) + (1− xj) log(1− dj(z))


− 1

2

k∑
κ=1

[
σκ(x) + µ2

κ(x)− log σκ(x)
] (4.10)

We have set a probabilistic model that depends on three functions, d, µ and σ, and
express, using variational inference, the optimization problem to solve in order to get
d?, µ? and σ? that give the optimal encoding-decoding scheme with this model. As we
cannot easily optimize over the entire space of functions, we constrain the optimization
domain and decide to express d, µ and σ as neural networks. Hence, D, M and S
correspond respectively to the families of functions defined by the networks architectures
and the optimization is done over the parameters of these networks. In practice, µ and
σ are not defined by two completely independent networks instead they share part of
their architecture and their weights (Rocca, 2019).

The neural networks, d, µ and σ are trained using stochastic gradient descent.
Due to its simple, closed form, it is clear how to compute the gradient of the second



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 81

term on the right hand side of Equation (4.10). The first term on the right hand side
of Equation (4.10) is a bit more tricky. The expectation Ez∼q [log p(x|z)] could be
estimated using sampling, but getting a good estimate would require many samples of
z ∼ q. However, we can take one sample as long as the minibatch size is large enough
(Kingma and Welling, 2013). Figure 4.14 shows a general diagram of a VAE.

encoder
q(z|x) ≡ N (µ(x), σ(x))

decoder
p(x|z)

x
µ

µ

σ

σ

z ∼ q(z|x)

y x̂ = f(y)

Figure 4.14: Diagram of a shallow VAE, note that we sample at the code layer z.
This sampling does not allow us to back propagate the error and avoid using stochastic
gradient descent to train the autoencoder.

There is a significant problem in the variational autoencoder represented schemati-
cally in Figure 4.14. The forward pass of this autoencoder works fine and, if the output
is averaged over many samples of x and z, produces the expected value. However, we
need to back-propagate the error through a layer that samples z from q. Because an
individual sample of z is not produced by a function, but rather by a sampling process
whose output changes every time we query it, it cannot be learned by back-propagation
because the stochastic portion of the computation is not differentiable.

The solution, called the “reparametrization trick”, is to first sample ε ∼ Nk(0, I)
and then compute z = µ(x) + σ(x)1/2ε. Thus, the ELBO would be written as

ELBO(q(z|x), p(x|z)) =Eε∼Nk(0,I)

[
log p(x|z = µ(x) + σ(x)

1/2ε)
]

−DKL(q(z)||p(z))
(4.11)



82 4.4. Variational Autoencoders

encoder
q(z|x) ≡ Nk(µ(x), σ(x))

decoder
p(x|z)

x

µ

µ

σ

σ

ε

ε

z

y x̂ = f(y)

Figure 4.15: Diagram of a shallow VAE, note that we sample ε as an input layer, and
we compute z = µ(x) + σ1/2(x)ε. This sampling allow us to back propagate the error
and let us use stochastic gradient descent to train the autoencoder.

Note that the expectation in Equation (4.11) is with respect a random variable
whose distribution is not a function of any of the variables whose derivatives we want
to calculate. We are now able to back-propagate through the sampling operation, by
regarding it as a deterministic operation with an extra input ε. This is shown schemat-
ically in Figure 4.15. In the particular case of a Bernoulli likelihood, the optimization
problem to solve is

(d?, µ?, σ?) ∈ arg max
(d,µ,σ)∈D×M×S

Eε∼Nk(0,I)

[
p∑
j=1

xj log(dj(z)) + (1− xj) log(1− dj(z))
∣∣∣z = µ(x) + σ(x)

1/2ε

]

− 1

2

k∑
κ=1

[
σκ(x) + µ2

κ(x)− log σκ(x)
]

(4.12)

4.4.2 Example (MNIST Data Set, Continuation)

For the MNIST data we build a VAE with a similar architecture to our previous autoen-
coder, however some adaptations are necessary due to the sampling step in the latent
space. The last layer of σ(x) has an exponential activation function, while the last layer
for µ(x) has a linear activation function. Then we compute z = µ(x) + σ1/2(x)ε, where
ε ∼ Nk(0, I).

We have taken p(z) ≡ Nk(0, I), thus the optimization problem induced by the
variational inference is expressed in Equation (4.12). As we have done before, we vary
the dimension of the latent space to be k = 2 or k = 98. Figure 4.16 shows a diagram
for this VAE.



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 83

encoder
q(z|x) ≡ Nk(µ(x), σ(x))

decoder
p(x|z) =

∏784
j=1 dj(z)xj (1− dj(z))(1−xj)

x

784
392, relu

196, relu

µ

µ

σ

σ

k,
µ : linear

σ : exponential

ε

ε

z

k
196, relu

392, relu

y = d(z)

784,
sigmoid

x̂j = 1 yj≥0.5

784

Figure 4.16: Deep VAE used in our experiments, we vary the dimension of the latent
space k to be 2 or 98.

Figures 4.17 and 4.18 show the reconstruction of the first 10 images of the testing
data set made by our VAE when the dimension of the latent space is k = 2 and
k = 98, respectively. In Figures 4.19 and 4.20 we compare the latent space induced
by the previous autoencoder built in Section 4.1.1 when k = 2 and the one induced
by our VAE when k = 2. We can notice the regularity in the latent space obtained
by the VAE. It is evident that there are large discontinuities in the space presented
in Figure 4.19, these sparse regions may not correspond to meaningful points. On the
other hand, the regularization term in the VAE encourages the training points to be
(roughly) distributed as a Gaussian distribution, and there are far fewer discontinuities
in Figure 4.20.

Figure 4.17: Reconstruction of the first 10 images of the testing MNIST data set using
our VAE when the dimension of the latent space is k = 2.

4.5 Variational Autoencoders with Missing Values

We can use variational autoencoders to reconstruct data points with missing values
in the same way as we did with denoising autoencoders in Section 4.2, just adding a
corruption process p(x̃|x,m) that represents the conditional distribution over corrupted
samples given the original data sample and the missing pattern, previous to the input
of the autoencoder. However, since we are introducing a probability model based on



84 4.5. Variational Autoencoders with Missing Values

Figure 4.18: Reconstruction of the first 10 images of the testing MNIST data set using
our VAE when the dimension of the latent space is k = 98.

Figure 4.19: Latent space of the
MNIST data set induced by our autoen-
coder when the dimension of the latent
space is k = 2.

Figure 4.20: Latent space of the
MNIST data set induced by our VAE
when the dimension of the latent space
is k = 2.

variational inference, it is interesting to analyze the induced optimization problem to
solve.

Assume that x̃ is a corrupted version of a data point x, built with the observed part
of x and its missingness pattern m in a similar way as we did in Equation (4.1). Let
p(x, x̃, z,m) be the joint distribution of x, x̃, z and m. Conditioning in different order
over the variables, we get two equivalent expressions for this distribution, given by

p(x, x̃, z,m) = p(z|x, x̃,m)p(x̃|x,m)p(x,m) (4.13)

p(x, x̃, z,m) = p(x̃|x, z,m)p(x,m|z)p(z) (4.14)

On the other hand, since z is the reconstruction made from the corrupted observation
x̃ and x̃ is defined through x and m, it is easy to see that

p(z|x, x̃,m) = p(z|x̃) (4.15)

and
p(x̃|x, z,m) = p(x̃|x,m) (4.16)

Substituting Equations (4.15) and (4.16) in Equations (4.13) and (4.14) and matching
the right hand sides, we get

p(z|x̃)�����
p(x̃|x,m)p(x,m) = �����

p(x̃|x,m)p(x,m|z)p(z) (4.17)

It is straightforward from Equation (4.17) that

p(z|x̃) =
p(x,m|z)p(z)

p(x,m)
(4.18)

Let us define the evidence and missingness mechanism lower bound (EMMELBO) as



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 85

EMMELBO(q(z|x̃), p(x,m|z)) = log p(x) + log p(m|x)−DKL(q(z|x̃)||p(z|x̃))
(4.19)

Definition 9 EMMELBO

where (q(z|x̃), p(x,m|z)) ∈ Q × P, and Q and P are parametric families of distri-
butions.

Because the difference between log p(x) + log p(m|x) and
EMMELBO(q(z|x̃), p(x,m|z)) is given by a KL divergence which is always non-negative,
we can see that EMMELBO(q(z|x̃), p(x,m|z)) is a lower bound of log p(x)+log p(m|x).
Note that the EMMELBO is maximized when q(z|x̃) is the same distribution that
p(z|x̃). From Equation (4.18), we can compute DKL(q(z|x̃)||p(z|x̃)) as

DKL(q(z|x̃)||p(z|x̃))

= Ez∼q(z|x̃) [log q(z|x̃)− log p(z|x̃)]

= Ez∼q(z|x̃)[log q(z|x̃)− log p(z)− log p(x,m|z) + log p(x,m)] (4.20)

Substituting Equation (4.20) in Equation (4.19), we get the more convenient way to
write the EMMELBO

EMMELBO(q(z|x̃), p(x,m|z))

= Ez∼q(z|x̃) [log p(x,m|z)]− Ez∼q(z|x̃) [log q(z|x̃)− log p(z)]

= Ez∼q(z|x̃) [log p(x,m|z)]−DKL(q(z|x̃)||p(z)) (4.21)

From Equation (4.21) we can see that q(z|x̃) acts as the encoder and p(x,m|z) as the
decoder of a variational autoencoder that tries to maximize the EMMELBO. Notice that
p(x,m|z) decodes z into the original point x and the missingness pattern m. Hence,
we can model the decoded variables y = d(z) and w = g(z) with two neural networks
that share part of their architecture and weights.

This observation has important repercussions when the autoencoder is used for
generative purposes. In most of the applications we do not have access to the mechanism
of missingness which can be difficult to capture with a simple model. An autoencoder
that has been trained to maximize the EMMELBO might create a data point xnew and
a missing patter mnew such that, if we delete the values of xnew in the places where
mnew = 1 the resulting observation would be a data point with missing values obtained
with the same mechanism of missingness as the observations that we have in the original
data set.

Creating new data points with the same mechanism of missingness might be impor-
tant in applications where we would like to share the original data set with a third-party,
but the data is susceptible to confidential information, hence we might create a new data
set with the same data-missing mechanism than the original one that we could share.
In many other applications, however, we are not interested in reconstructing the miss-
ing pattern, in this case we can set the decoder to be p(x|z) as in usual variational
autoencoders, and instead of maximizing the EMMELBO, we could maximize

Ez∼q(z|x̃) [log p(x|z)]−DKL(q(z|x̃)||p(z)) (4.22)

As usual, with variational autoencoders we can set q(z|x̃) ≡ Nk(µ(x̃), σ(x̃)) and p(z) ≡
Nk(0, I). A variational autoencoder that maximizes the EMMELBO can be trained



86 4.5. Variational Autoencoders with Missing Values

using back-propagation and the reparametrization trick. Figure 4.21 shows a diagram
of a VAE trained to maximize the EMMELBO.

encoder
q(z|x̃) ≡ Nk(µ(x̃), σ(x̃))

decoder
p(x,m|z)

corruption
p(x̃|x,m)

x̃

x

m

µ

µ

σ

σ

ε

ε

z

y = d(z)

w = g(z)

x̂ = f(y)

m̂ = h(w)

Figure 4.21: Diagram of a shallow VAE trained to maximize the EMMELBO, note that
we sample ε as an input layer, and we compute z = µ(x̃) + σ1/2(x̃)ε. This sampling
allows us to back-propagate the error so we can use stochastic gradient descent to train
the autoencoder.

4.5.1 Example (MNIST Data Set, Continuation)

Consider once again the MNIST data and the data-missing mechanism that we intro-
duced in Section 4.2.1 that creates x̃ from the original point x and the missing pattern
m. Since we are only interested in the reconstruction of the original images, we construct
a VAE that maximizes the criterion presented in Equation (4.22), instead of maximizing
the EMMELBO. We have set q(z|x̃) ≡ Nk(µ(x̃), σ(x̃)) and p(z) ≡ Nk(0, I). In Equa-
tion (4.10) we show that the optimization problem to solve with these assumptions is
given by

(d?, µ?, σ?) ∈ arg max
(d,µ,σ)∈D×M×S

Ez∼q(z|x̃)

 p∑
j=1

x̃j log(dj(z)) + (1− x̃j) log(1− dj(z))


− 1

2

k∑
κ=1

[
σκ(x̃) + µ2

κ(x̃)− log σκ(x̃)
]

We have used the same encoder-decoder architecture as in our traditional autoen-
coder, which is represented schematically in Figure 4.16, except that the input now is x̃



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 87

instead of x. As it is usual now in our experiments, we vary the dimension of the latent
space to be k = 2 or k = 98. As in our experiments with the denoising autoencoders for
missing data, we vary the number of missing pixels to be 157 or 704. In Figures 4.22
to 4.25 we show the results of the reconstructions. The original image is shown at the
top, the image with missing values is shown in the middle and the reconstruction done
by the VAE is shown at the bottom.

Figure 4.22: Reconstruction of the first 10 images of the testing MNIST data set, using
our VAE for missing data when the dimension of the latent space is k = 2 and 157
pixels have missing values.

Figure 4.23: Reconstruction of the first 10 images of the testing MNIST data set, using
our VAE for missing data when the dimension of the latent space is k = 98 and 157
pixels have missing values.

Figure 4.24: Reconstruction of the first 10 images of the testing MNIST data set, using
our VAE for missing data when the dimension of the latent space is k = 2 and 704
pixels have missing values.



88 4.5. Variational Autoencoders with Missing Values

Figure 4.25: Reconstruction of the first 10 images of the testing MNIST data set, using
our VAE for missing data when the dimension of the latent space is k = 98 and 704
pixels have missing values.

4.5.2 Extensions of Variational Autoencoders

Remember that traditional autoencoders maximize some function L(x, d(z)), where
z = e(x) is the code of x and L(x, d(z)) penalizes the dissimilarity between d(z) and
x, a usual choice for L is the log-likelihood p(x|z) where d(z) is a parameter of this
distribution, to be learned. Hence, training an autoencoder is equivalent to solve the
optimization problem

(e?, d?) ∈ arg max
(e,d)∈E×D

Ez∼δe(x)
[L(x, d(z))] (4.23)

On the other hand, training a traditional VAE is equivalent to solve the optimization
problem

(q?(z|x), p?(x|z)) ∈ arg max
(q(z|x),p(x|z))∈Q×P

Ez∼q(z|x) [L(x, d(z))]

− Ez∼q(z|x) [L(q(z|x), p(z))]
(4.24)

where Q and P are parametric families of distributions, L(x, d(z)) = log p(x|z), d(z)
and L(q(z|x), p(z)) = log q(z|x)− log p(z).

We could add a regularization parameter β > 0 into Equation (4.24), changing the
optimization problem to be

(q?(z|x), p?(x|z)) ∈ arg max
(q(z|x),p(x|z))∈Q×P

Ez∼q(z|x) [L(x, d(z))]

− βEz∼q(z|x) [L(q(z|x), p(z))]
(4.25)

Small values of β would make the optimization problem presented in Equation (4.25)
to be more similar to the optimization problem in Equation (4.23), and hence will favor
exact reconstruction at a price of a less regular latent space. On the other hand, if β
is chosen to be extremely large, then all points will have the same hidden distribution
p(z).

Additionally to the regularization parameter β, we could change the functions
L(x, d(z)) and L(q(z|x), p(z)) to other functions that make sense into the particular
problem that we have on hand and to the final use of the variational autoencoder.
However, the new criterion could not have the same interpretation as a lower bound of
the evidence.

In Sections 4.2 and 4.5 we explain how denoising autoencoders and variational au-
toencoders could be used to handle points with missing values. Furthermore, we discuss



Chapter 4. Use of Autoencoders for the Reconstruction of Missing Data 89

how variational autoencoders could produce not only new points, but also new missing
patterns such that they are created with the same mechanism of missingness that the
original observations. Thus, we can add an output g(z) that tries to reconstruct the
missing pattern, where g ∈ G and G is a family of parametric functions. This output
could be added in the same way to denoising autoencoders. Therefore, when dealing
with missing values, we could solve the optimization problems

(e?, d?) ∈ arg max
(e,d)∈E×D

Ez∼δe(x̃)
[L(x̃, d(z))] + β1Ez∼δe(x̃)

[L(m, g(z))] (4.26)

when we train a denoising autoencoder, and

(q?(z|x̃), d?, g?) ∈ arg max
(q(z|x),d,g)∈Q×D×G

Ez∼q(z|x̃) [L(x̃, d(z))]

+ β1Ez∼q(z|x̃) [L(m, g(z))]

− β2Ez∼q(z|x̃) [L(q(z|x̃), p(z))]

(4.27)

when we train a variational autoencoder, where β1, β2 ≥ 0. In this case, large values of
β1 would encourage the autoencoders to learn the data-missing mechanism rather than
reconstruct the original input and small values of β2 will favor exact reconstruction at
a price of a less regular latent space.

In the work of Im et al. (2017), they consider the use of VAEs with a denoising
criterion. They part from the idea that denoising criteria helps to achieve good gen-
eralization since the low dimensional representation is robust to small (Vincent et al.,
2008) noise. Ryu, Kim, and Kim (2020) used this denoising criterion in a study to
impute missing values using autoencoders. This criterion differs from the EMMELBO
in its form an conception. In the work of Im et al. (2017) they consider that we artifi-
cially inject noise to the original input through a corruption process that is completely
determined by the user and then it is irrelevant to learn the mechanism that corrupts
the original data. In our work, the EMMELBO is developed from the idea that the
corruption process is through an unknown mechanism of missingness.

With similar ideas to the development of the EMMELBO, Collier, Nazabal, and
Williams (2020) propose to maximize

Ez∼q(z|x̃,m) [log p(xo|z,m)]−DKL(q(z|x̃,m)||p(z))

where xo is the observed part of x. Note that in this criterion the missingness pattern m
does not appear in the corruption process, instead it appears in q(z|x̃,m) and p(xo|z,m)
allowing the encoder and decoder networks to distinguish between observed elements of
the input and missing values. Furthermore, this criterion does not require to know the
original input x.

Since different autoencoders maximize different functions, that are not necessarily
in the same scale, we need some way to compare them. One function that we could use
for this purpose is the area under the curve (AUC), that could be computed as

AUC(x,y) =
1

n+n−

∑
i<j

1 (xi−xj)(yi−yj)>0

where n+ =
∑p

i=1 1 xi=1 and n− =
∑p

i=1 1 xi=0. Note that this function is maximized
if for all xi = 1 and for all xj = 0, we have yi > yj .

In some applications, like recommender systems we do not always have access to the
original point x (it is difficult that one user has interacted with all the items or that



90 4.6. Recommender Systems with Autoencoders and Future Work

one item has been evaluated by all users), instead we only have access to its incomplete
counterpart x̃, so we cannot compare its reconstructed version y to the original x.
Luckily, one advantage of the AUC is that it can be calculated just in those parts of
x that are observed. If we define x̃ according to the corruption process defined in
Section 4.2.1, then the AUC can be computed as

AUC(x̃,y) =
1

ñ+ñ−

∑
x̃i,x̃j∈{0,1}

i<j

1 (x̃i−x̃j)(yi−yi)>0

where ñ+ =
∑p

i= 1 x̃i=1 and ñ− =
∑p

i=1 1 x̃i=0

If we decide to compare the autoencoders using the AUC, we could try to train
them to maximize this function, that is, we could take L(x̃,y) = AUC(x̃,y) in Equa-
tions (4.26) and (4.27). However, the AUC is not a differentiable function. So, we cannot
apply back-propagation to train an autoencoder that tries to maximize the AUC. Hence,
we can use the approximated function suggested in Vogel, Bellet, and Clémençon (2020),
given by

L(x̃,y) =
1

ñ+ñ−

∑
x̃i,x̃j∈{0,1}

i<j

σ((x̃i − x̃j)(yi − yj)) (4.28)

where σ(x) = 1
1+e−x

4.6 Recommender Systems with Autoencoders and Future
Work

Deep learning techniques (and particularly autoencoders) are becoming the dominant
base for recommender systems (Dacrema, Cremonesi, and Jannach, 2019; Bacuet, 2019).
Neural network-based collaborative filtering (He et al., 2017) generalizes Matrix Factor-
ization by replacing the inner product with a neural network that can learn an arbitrary
function from the data. Wang, Wang, and Yeung (2015) propose the Collaborative Deep
Learning (CDL) method which is based on Stacked Denoising Autoencoders (SDAE)
and Collaborative Filtering, similarly Li, Kawale, and Fu (2015) consider marginalized
deniosing autoencoders (a variant of SDAE), these works aim to find a deep latent repre-
sentation for content information. Li and She (2017) propose the use of a Collaborative
Variational Autoencoder which learns the distribution for content in the latent space
instead of the observation space and also learns implicit relationships between items and
users from both content and rating. Liang et al. (2018) also make use of Variational
Autoencoders considering the multinomial log-likelihood and the loss function presented
in Equation (4.25) where β is selected through a simple heuristic in which they start
with β = 0 and gradually increase β = 1, selecting the value associated with the best
results.

Some of the ideas developed in this chapter could also be applied, for example we
could built an autoencoder which considers the loss function given by the approximated
AUC presented in Equation (4.28). Such autoencoder would learn to put a higher value
on those items that the user might like while assigning lower values to those items that
he/she might not like.



References

Aggarwal, Charu C et al. (2018). Neural networks and deep learning. Springer (see
pp. 15, 17).

Aghdam, Hamed Habibi and Elnaz Jahani Heravi (2017). “Guide to convolutional neural
networks”. In: New York, NY: Springer 10, pp. 978–973 (see p. 15).

Alain, Guillaume and Yoshua Bengio (2014). “What regularized auto-encoders learn
from the data-generating distribution”. In: The Journal of Machine Learning Re-
search 15.1, pp. 3563–3593 (see p. 76).

Azur, Melissa J et al. (2011). “Multiple imputation by chained equations: what is it
and how does it work?” In: International journal of methods in psychiatric research
20.1, pp. 40–49 (see p. 75).

Bacuet, Quentin (2019). How Variational Autoencoders make classical recommender
systems obsolete. url: https : / / medium . com / snipfeed / how - variational -

autoencoders - make - classical - recommender - systems - obsolete -

4df8bae51546 (see p. 90).
Barber, David (2012). Bayesian reasoning and machine learning. Cambridge University

Press (see p. 78).
Barber, David and P de van Laar (1999). “Variational cumulant expansions for in-

tractable distributions”. In: Journal of Artificial Intelligence Research 10, pp. 435–
455 (see p. 78).

Barcenas, Roberto (2020). “Local sampling SVM and minority oversampling boosting:
sampling-based approaches for statistical classification”. In: Ph. D. dissertation (see
p. 5).

Beaulieu-Jones, Brett K and Jason H Moore (2017). “Missing data imputation in the
electronic health record using deeply learned autoencoders”. In: Pacific Symposium
on Biocomputing 2017. World Scientific, pp. 207–218 (see p. 76).

Bengio, Yoshua et al. (2013). “Generalized denoising auto-encoders as generative mod-
els”. In: Advances in neural information processing systems 26, pp. 899–907 (see
p. 76).

Biau, Gérard (2012). “Analysis of a random forests model”. In: Journal of Machine
Learning Research 13.Apr, pp. 1063–1095 (see pp. 10, 51).

Biau, Gérard, Luc Devroye, and Gábor Lugosi (2008). “Consistency of random forests
and other averaging classifiers”. In: Journal of Machine Learning Research 9.Sep,
pp. 2015–2033 (see pp. 10, 51).

91

https://medium.com/snipfeed/how-variational-autoencoders-make-classical-recommender-systems-obsolete-4df8bae51546
https://medium.com/snipfeed/how-variational-autoencoders-make-classical-recommender-systems-obsolete-4df8bae51546
https://medium.com/snipfeed/how-variational-autoencoders-make-classical-recommender-systems-obsolete-4df8bae51546


92 References

Blei, David M, Michael I Jordan, et al. (2006). “Variational inference for Dirichlet
process mixtures”. In: Bayesian analysis 1.1, pp. 121–143 (see p. 78).

Blei, David M, Alp Kucukelbir, and Jon D McAuliffe (2017). “Variational inference: A
review for statisticians”. In: Journal of the American statistical Association 112.518,
pp. 859–877 (see p. 78).

Bourlard, Hervé and Yves Kamp (1988). “Auto-association by multilayer perceptrons
and singular value decomposition”. In: Biological cybernetics 59.4-5, pp. 291–294
(see p. 17).

Braun, Michael and Jon McAuliffe (2010). “Variational inference for large-scale models
of discrete choice”. In: Journal of the American Statistical Association 105.489,
pp. 324–335 (see p. 78).

Breiman, Leo (1996). “Bagging predictors”. In: Machine learning 24.2, pp. 123–140 (see
pp. 9, 29).

— (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32 (see pp. 8, 11, 40).
— (2003). Setting up, using, and understanding random forests V4.0. url: https:

//www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf (see
pp. 19, 27, 28, 35, 40).

— (2004). “Consistency for a simple model of random forests”. In: (see pp. 10, 51).
Breiman, Leo et al. (1984). Classification and regression trees. Chapman and Hall/CRC

(see pp. 11, 21, 28).
Chen, Tianqi and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting system”.

In: Proceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, pp. 785–794 (see p. 29).

Collier, Mark, Alfredo Nazabal, and Christopher KI Williams (2020). “VAEs in the
Presence of Missing Data”. In: arXiv preprint arXiv:2006.05301 (see p. 89).

Costa, Adriana Fonseca et al. (2018). “Missing data imputation via denoising autoen-
coders: the untold story”. In: International Symposium on Intelligent Data Analysis.
Springer, pp. 87–98 (see pp. 67, 72, 73, 75).

Creswell, Antonia et al. (2018). “Generative adversarial networks: An overview”. In:
IEEE Signal Processing Magazine 35.1, pp. 53–65 (see p. 17).

Crookston, Nicholas L and Andrew O Finley (2008). “yaImpute: an R package for kNN
imputation”. In: Journal of Statistical Software. 23 (10). 16 p. (see p. 28).

Cutler, Adele and Guohua Zhao (2001). “Pert-perfect random tree ensembles”. In: Com-
puting Science and Statistics 33, pp. 490–497 (see p. 51).

Dacrema, Maurizio Ferrari, Paolo Cremonesi, and Dietmar Jannach (2019). “Are we
really making much progress? A worrying analysis of recent neural recommendation
approaches”. In: Proceedings of the 13th ACM Conference on Recommender Systems,
pp. 101–109 (see p. 90).

Dempster, Arthur P, Nan M Laird, and Donald B Rubin (1977). “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 39.1, pp. 1–22 (see pp. 29, 75, 78).

Deng, Li and Yang Liu (2018). Deep learning in natural language processing. Springer
(see p. 15).

Denil, Misha, David Matheson, and Nando Freitas (2013). “Consistency of online ran-
dom forests”. In: International conference on machine learning, pp. 1256–1264 (see
p. 52).

Devroye, Luc and Gábor Lugosi (2012). Combinatorial methods in density estimation.
Springer Science & Business Media (see p. 8).

Doersch, Carl (2016). “Tutorial on variational autoencoders”. In: arXiv preprint
arXiv:1606.05908 (see pp. 17, 80).

https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf


References 93

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository. url: http:
//archive.ics.uci.edu/ml (see p. 28).

Efromovich, Sam (2008). Nonparametric curve estimation: methods, theory, and appli-
cations. Springer Science & Business Media (see p. 8).

Erhan, Dumitru et al. (2010). “Why does unsupervised pre-training help deep learning?”
In: Proceedings of the thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, pp. 201–208 (see p. 76).

Farhangfar, Alireza, Lukasz Kurgan, and Jennifer Dy (2008). “Impact of imputation
of missing values on classification error for discrete data”. In: Pattern Recognition
41.12, pp. 3692–3705 (see pp. 21, 28).

Feelders, Ad (1999). “Handling missing data in trees: surrogate splits or statistical
imputation?” In: European Conference on Principles of Data Mining and Knowledge
Discovery. Springer, pp. 329–334 (see pp. 21, 27, 28).

Friedman, Jerome H et al. (1991). “Multivariate adaptive regression splines”. In: The
annals of statistics 19.1, pp. 1–67 (see p. 29).

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2009). The elements of sta-
tistical learning. 2nd ed. Springer series in statistics New York (see p. 21).

Garćıa-Laencina, Pedro J, José-Luis Sancho-Gómez, and AńıBal R Figueiras-Vidal
(2013). “Classifying patterns with missing values using multi-task learning percep-
trons”. In: Expert Systems with Applications 40.4, pp. 1333–1341 (see p. 75).

Genuer, Robin (2012). “Variance reduction in purely random forests”. In: Journal of
Nonparametric Statistics 24.3, pp. 543–562 (see pp. 10, 51).

Gini, Corrado (1912). “Variabilità e mutabilità”. In: Reprinted in Memorie di metodolog-
ica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi (see
p. 11).

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Domain adaptation for
large-scale sentiment classification: A deep learning approach”. In: ICML (see p. 68).

Gondara, Lovedeep and Ke Wang (2017). “Recovering loss to followup information using
denoising autoencoders”. In: 2017 IEEE International Conference on Big Data (Big
Data). IEEE, pp. 1936–1945 (see p. 76).

— (2018). “Mida: Multiple imputation using denoising autoencoders”. In: Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, pp. 260–272 (see
pp. 72, 75).

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural
information processing systems, pp. 2672–2680 (see p. 17).

Goodfellow, Ian et al. (2016). Deep learning. Vol. 1. 2. MIT press Cambridge (see pp. 14,
15, 68, 69).

Goyal, Palash, Sumit Pandey, and Karan Jain (2018). “Deep learning for natural lan-
guage processing”. In: Deep Learning for Natural Language Processing: Creating
Neural Networks with Python [Berkeley, CA]: Apress, pp. 138–143 (see p. 14).

Györfi, László et al. (2002). A distribution-free theory of nonparametric regression.
Springer Science & Business Media (see p. 8).

Hapfelmeier, Alexander, Torsten Hothorn, and Kurt Ulm (2012). “Recursive partition-
ing on incomplete data using surrogate decisions and multiple imputation”. In: Com-
putational Statistics & Data Analysis 56.6, pp. 1552–1565 (see pp. 21, 28, 31, 48).

He, Xiangnan et al. (2017). “Neural collaborative filtering”. In: Proceedings of the 26th
international conference on world wide web, pp. 173–182 (see p. 90).

Hinton, Geoffrey E and Richard Zemel (1993). “Autoencoders, minimum description
length and Helmholtz free energy”. In: Advances in neural information processing
systems 6, pp. 3–10 (see p. 17).

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


94 References

Hothorn, Torsten, Kurt Hornik, and Achim Zeileis (2006). “Unbiased recursive par-
titioning: A conditional inference framework”. In: Journal of Computational and
Graphical statistics 15.3, pp. 651–674 (see pp. 12, 28, 48).

Hothorn, Torsten and Achim Zeileis (2015). “partykit: A Modular Toolkit for Recursive
Partytioning in R”. In: Journal of Machine Learning Research 16.118, pp. 3905–
3909. url: http://jmlr.org/papers/v16/hothorn15a.html (see p. 22).

Im, Daniel J. et al. (2017). “Denoising criterion for variational auto-encoding frame-
work”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. 1
(see p. 89).

Ishioka, Tsunenori (2013). “Imputation of missing values for unsupervised data using
the proximity in random forests”. In: International Conference on Mobile, Hybrid,
and On-line Learning. Nice, pp. 30–36 (see pp. 20, 27, 28, 35, 48).

Ishwaran, Hemant and Udaya B Kogalur (2010). “Consistency of random survival
forests”. In: Statistics & probability letters 80.13-14, pp. 1056–1064 (see pp. 10, 52).

Jarrett, Kevin et al. (2009). “What is the best multi-stage architecture for object recog-
nition?” In: 2009 IEEE 12th international conference on computer vision. IEEE,
pp. 2146–2153 (see p. 68).

Jordan, Michael I et al. (1999). “An introduction to variational methods for graphical
models”. In: Machine learning 37.2, pp. 183–233 (see p. 77).

Josse, Julie et al. (2019). “On the consistency of supervised learning with missing val-
ues”. In: arXiv preprint arXiv:1902.06931 (see pp. 22, 29, 48).

Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational bayes”. In:
arXiv preprint arXiv:1312.6114 (see pp. 17, 76, 81).

— (2019). “An introduction to variational autoencoders”. In: arXiv preprint
arXiv:1906.02691 (see p. 17).

Kucukelbir, Alp et al. (2017). “Automatic differentiation variational inference”. In: The
Journal of Machine Learning Research 18.1, pp. 430–474 (see p. 78).

Laurent, Beatrice and Pascal Massart (2000). “Adaptive estimation of a quadratic func-
tional by model selection”. In: Annals of Statistics, pp. 1302–1338 (see p. 59).

LeCun, Y. (1987). “Modeles connexionnistes de lapprentissage”. In: Ph. D. dissertation
(see p. 17).

Lee, Honglak, Chaitanya Ekanadham, and Andrew Ng (2007). “Sparse deep belief net
model for visual area V2”. In: Advances in neural information processing systems
20, pp. 873–880 (see p. 76).

Leisink, Martijn AR and Hilbert J Kappen (2001). “A tighter bound for graphical
models”. In: Neural Computation 13.9, pp. 2149–2171 (see p. 78).

Li, Sheng, Jaya Kawale, and Yun Fu (2015). “Deep collaborative filtering via marginal-
ized denoising auto-encoder”. In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pp. 811–820 (see p. 90).

Li, Xiaopeng and James She (2017). “Collaborative variational autoencoder for recom-
mender systems”. In: Proceedings of the 23rd ACM SIGKDD international confer-
ence on knowledge discovery and data mining, pp. 305–314 (see p. 90).

Liang, Dawen et al. (2018). “Variational autoencoders for collaborative filtering”. In:
Proceedings of the 2018 World Wide Web Conference, pp. 689–698 (see p. 90).

Lin, Yi and Yongho Jeon (2006). “Random forests and adaptive nearest neighbors”. In:
Journal of the American Statistical Association 101.474, pp. 578–590 (see p. 51).

Little, Roderick JA and Donald B Rubin (2002). Statistical analysis with missing data.
2nd ed. John Wiley & Sons (see p. 18).

Louppe, Gilles (2014). “Understanding random forests: From theory to practice”. In:
arXiv preprint arXiv:1407.7502 (see p. 5).

http://jmlr.org/papers/v16/hothorn15a.html


References 95

Ma, Qian et al. (2020). “MIDIA: exploring denoising autoencoders for missing data
imputation”. In: Data Mining and Knowledge Discovery 34.6, pp. 1859–1897 (see
pp. 72, 73, 75).

MacKay, David JC (1997). Ensemble learning for hidden Markov models. Tech. rep. (see
p. 78).

Mallinson, H and A Gammerman (2003). “Imputation using support vector machines”.
In: Department of Computer Science. Royal Holloway, University of London. Egham,
UK (see p. 75).

Meinshausen, Nicolai (2006). “Quantile regression forests”. In: Journal of Machine
Learning Research 7.Jun, pp. 983–999 (see p. 52).

Mentch, Lucas and Giles Hooker (2016). “Quantifying uncertainty in random forests
via confidence intervals and hypothesis tests”. In: The Journal of Machine Learning
Research 17.1, pp. 841–881 (see p. 51).

Minka, Thomas P (2001). “Expectation propagation for approximate Bayesian infer-
ence”. In: Uncertainty in Artificial Inteligence (see p. 78).

Minka, Tom et al. (2005). Divergence measures and message passing. Tech. rep. Tech-
nical report, Microsoft Research (see p. 78).

Mitchell, Lawrence et al. (2011). “A parallel random forest classifier for R”. In: Pro-
ceedings of the second international workshop on Emerging computational methods
for the life sciences, pp. 1–6 (see p. 5).

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of
machine learning. MIT press (see p. 5).

Morgan, James N and Robert C Messenger (1973). “THAID, a sequential analysis pro-
gram for the analysis of nominal scale dependent variables”. In: (see p. 11).

Müller, Peter and Fernando A Quintana (2004). “Nonparametric Bayesian data analy-
sis”. In: Statistical science, pp. 95–110 (see p. 8).

Nair, Vinod and Geoffrey E Hinton (2010). “Rectified linear units improve restricted
boltzmann machines”. In: ICML (see p. 68).

Ning, Xiuli et al. (2017). “Missing data of quality inspection imputation algorithm base
on stacked denoising auto-encoder”. In: 2017 IEEE 2nd International Conference
on Big Data Analysis (ICBDA). IEEE, pp. 84–88 (see p. 76).

Oba, Shigeyuki et al. (2003). “A Bayesian missing value estimation method for gene
expression profile data”. In: Bioinformatics 19.16, pp. 2088–2096 (see p. 28).

Quinlan, J. Ross (1986). “Induction of decision trees”. In: Machine learning 1.1, pp. 81–
106 (see pp. 11, 21).

— (1993). C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. (see pp. 11, 21).

Ramachandran, Prajit, Barret Zoph, and Quoc V Le (2017). “Searching for activation
functions”. In: arXiv preprint arXiv:1710.05941 (see p. 68).

Sparse feature learning for deep belief networks (2008), pp. 1185–1192 (see p. 76).
Rieger, Anna, Torsten Hothorn, and Carolin Strobl (2010). “Random forests with miss-

ing values in the covariates”. In: (see pp. 3, 21, 27–32, 48).
Rifai, Salah et al. (2012). “A generative process for sampling contractive auto-encoders”.

In: arXiv preprint arXiv:1206.6434 (see p. 76).
Rocca, Joseph (2019). Understanding Variational Autoencoders (VAEs). url: https://

towardsdatascience.com/understanding-variational-autoencoders-vaes-

f70510919f73 (see pp. 15, 17, 80).
Rubin, Donald B (1976). “Inference and missing data”. In: Biometrika 63.3, pp. 581–

592 (see p. 18).

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


96 References

Rubin, Donald B (1996). “Multiple imputation after 18+ years”. In: Journal of the
American statistical Association 91.434, pp. 473–489 (see p. 21).

— (2004). Multiple imputation for nonresponse in surveys. Vol. 81. John Wiley & Sons
(see p. 21).

Ryu, Seunghyoung, Minsoo Kim, and Hongseok Kim (2020). “Denoising Autoencoder-
Based Missing Value Imputation for Smart Meters”. In: IEEE Access 8, pp. 40656–
40666 (see pp. 72, 75, 89).

Schafer, Joseph L (1997). Analysis of incomplete multivariate data. CRC press (see
p. 28).

Schafer, Joseph L and Maren K Olsen (1998). “Multiple imputation for multivariate
missing-data problems: A data analyst’s perspective”. In: Multivariate behavioral
research 33.4, pp. 545–571 (see p. 28).

Scornet, Erwan (2016). “On the asymptotics of random forests”. In: Journal of Multi-
variate Analysis 146, pp. 72–83 (see p. 51).

Scornet, Erwan, Gérard Biau, and Jean-Philippe Vert (2015). “Consistency of random
forests”. In: The Annals of Statistics 43.4, pp. 1716–1741 (see pp. 3, 10, 51, 52).

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning:
From theory to algorithms. Cambridge university press (see p. 5).

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In: Bell
system technical journal 27.3, pp. 379–423 (see p. 11).

Skansi, Sandro (2018). Introduction to Deep Learning: from logical calculus to artificial
intelligence. Springer (see p. 15).

Stekhoven, Daniel J and Peter Bühlmann (2011). “MissForest—non-parametric missing
value imputation for mixed-type data”. In: Bioinformatics 28.1, pp. 112–118 (see
pp. 20, 27, 28, 35, 48).

Strasser, Helmut and Christian Weber (1999). “On the asymptotic theory of permuta-
tion statistics”. In: (see p. 12).

Strobl, Carolin, Anne-Laure Boulesteix, and Thomas Augustin (2007). “Unbiased split
selection for classification trees based on the Gini index”. In: Computational Statis-
tics & Data Analysis 52.1, pp. 483–501 (see p. 11).

Therneau, Terry M, Elizabeth J Atkinson, et al. (1997). An introduction to recursive
partitioning using the RPART routines. Tech. rep. Technical report Mayo Founda-
tion (see pp. 21, 28).

Thompson, Steven K. (2012). Sampling. 3rd ed. John Wiley & Sons (see p. 19).
Tolstikhin, Ilya et al. (2017). “Wasserstein auto-encoders”. In: arXiv preprint

arXiv:1711.01558 (see p. 75).
Troyanskaya, Olga et al. (2001). “Missing value estimation methods for DNA microar-

rays”. In: Bioinformatics 17.6, pp. 520–525 (see pp. 28, 48, 75).
Tsybakov, Alexandre B (2008). Introduction to nonparametric estimation. Springer Sci-

ence & Business Media (see p. 8).
Twala, Beth, MC Jones, and David J Hand (2008). “Good methods for coping with

missing data in decision trees”. In: Pattern Recognition Letters 29.7, pp. 950–956
(see pp. 21, 27, 29, 37, 48).

Van Buuren, Stef et al. (2006). “Fully conditional specification in multivariate impu-
tation”. In: Journal of statistical computation and simulation 76.12, pp. 1049–1064
(see pp. 21, 28, 48, 75).

Venables and Ripley (2002). “Modern Applied Statistics with S”. In: Springer, New
York 1228, p. 1229 (see p. 21).

Vincent, Pascal (2011). “A connection between score matching and denoising autoen-
coders”. In: Neural computation 23.7, pp. 1661–1674 (see p. 76).



References 97

Vincent, Pascal et al. (2008). “Extracting and composing robust features with denois-
ing autoencoders”. In: Proceedings of the 25th international conference on Machine
learning, pp. 1096–1103 (see pp. 72, 76, 89).

Vincent, Pascal et al. (2010). “Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion.” In: Journal of machine
learning research 11.12 (see p. 75).

Vogel, Robin, Aurélien Bellet, and Stéphan Clémençon (2020). “Learning Fair Scoring
Functions: Fairness Definitions, Algorithms and Generalization Bounds for Bipartite
Ranking”. In: arXiv preprint arXiv:2002.08159 (see p. 90).

Wager, Stefan and Susan Athey (2018). “Estimation and inference of heterogeneous
treatment effects using random forests”. In: Journal of the American Statistical
Association 113.523, pp. 1228–1242 (see p. 51).

Wainwright, Martin J and Michael Irwin Jordan (2008). Graphical models, exponential
families, and variational inference. Now Publishers Inc (see p. 78).

Wang, Hao, Naiyan Wang, and Dit-Yan Yeung (2015). “Collaborative deep learning
for recommender systems”. In: Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1235–1244 (see p. 90).

Waterhouse, Steve R, David MacKay, and Anthony J Robinson (1996). “Bayesian meth-
ods for mixtures of experts”. In: Advances in neural information processing systems,
pp. 351–357 (see p. 78).

Xia, Jing et al. (2017). “Adjusted weight voting algorithm for random forests in handling
missing values”. In: Pattern Recognition 69, pp. 52–60 (see p. 75).

Xie, Junyuan, Linli Xu, and Enhong Chen (2012). “Image denoising and inpainting with
deep neural networks”. In: Advances in neural information processing systems 25,
pp. 341–349 (see p. 76).

Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). “Generalized belief
propagation”. In: Advances in neural information processing systems, pp. 689–695
(see p. 78).

Zhao, Guohua (2000). “A new perspective on classification”. In: Ph. D. dissertation (see
p. 51).

Zhu, Ruoqing, Donglin Zeng, and Michael R Kosorok (2015). “Reinforcement learning
trees”. In: Journal of the American Statistical Association 110.512, pp. 1770–1784
(see pp. 10, 52).





A
Decomposition of the CART Criterion

Remember that the modified CART criterion is defined as

Ln (A, d,w) =
1

N̂(A)

n∑
i=1

(
Yi − ŶA

)2
1

X̂i,in∈A

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAL

)2
1

X̂i,in∈A, a(h)≤X̂(h)
i,out<z

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAR

)2
1

X̂i,in∈A, z≤X̂
(h)
i,out≤b(h)

Note that

1

N̂(A)

n∑
i=1

(
Yi − ŶA

)2
1

X̂i,in∈A

=
1

N̂(A)

n∑
i=1

(
Yi − ŶA

)2
1

X̂i,in∈A,M
(h)
i =0

+
1

N̂(A)

n∑
i=1

(
Yi − ŶA

)2
1

X̂i,in∈A,M
(h)
i =1

=
1

N̂(A)

n∑
i=1

(
Yi + Ŷ

(h)
A,obs − Ŷ

(h)
A,obs − ŶA

)2
1

X̂i,in∈A,M
(h)
i =0

+
1

N̂(A)

n∑
i=1

(
Yi + Ŷ

(h)
A,miss − Ŷ

(h)
A,miss − ŶA

)2
1

X̂i,in∈A,M
(h)
i =1

where

Ŷ
(h)
A,obs =

1

N̂
(h)
obs

n∑
i=1

Yi1 X̂i,in∈A,M
(h)
i =0

Ŷ
(h)
A,miss =

1

N̂
(h)
miss

n∑
i=1

Yi1 X̂i,in∈A,M
(h)
i =1

99



100

Thus,

1

N̂(A)

n∑
i=1

(
Yi − ŶA

)2
1

X̂i,in∈A =
1

N̂(A)

n∑
i=1

(
Yi + Ŷ

(h)
A,obs

)2
1

X̂i,in∈A,M
(h)
i =0

+
1

N̂(A)

n∑
i=1

(
Yi + Ŷ

(h)
A,miss

)2
1

X̂i,in∈A,M
(h)
i =1

+
N̂

(h)
obs (A)

N̂(A)

(
Ŷ

(h)
A,obs − ŶA

)2

+
N̂

(h)
miss(A)

N̂(A)

(
Ŷ

(h)
A,miss − ŶA

)2

Additionally, let us define

N̂
(h)
obs (AL) =

n∑
i=1

1
X̂i,in∈A, a(h)≤X̂(h)

i,out<z,M
(h)
i =0

N̂
(h)
miss(AL) =

n∑
i=1

1
X̂i,in∈A, a(h)≤X̂(h)

i,out<z,M
(h)
i =1

(resp. for N̂
(h)
obs (AR) and N̂

(h)
miss(AR))

and

ŶAL,obs =
1

N̂
(h)
obs (AL)

n∑
i=1

Yi1 X̂i,in∈A, a(h)≤X̂(h)
i,out<z,M

(h)
i =0

ŶAL,miss =
1

N̂
(h)
miss(AL)

n∑
i=1

Yi1 X̂i,in∈A, a(h)≤X̂(h)
i,out<z,M

(h)
i =1

(resp. for ŶAR,obs and ŶAR,miss)

Applying the analogous procedure, we can show that

1

N̂(A)

n∑
i=1

(
Yi − ŶAL

)2
1

X̂i,in∈A, a(h)≤X̂(h)
i,out<z

=
1

N̂(A)

n∑
i=1

(
Yi + ŶAL,obs

)2
1

X̂i,in∈A, a(h)≤X̂(h)
i,out<z,M

(h)
i =0

+
1

N̂(A)

n∑
i=1

(
Yi + ŶAL,miss

)2
1

X̂i,in∈A, a(h)≤X̂(h)
i,out<z,M

(h)
i =1

+
N̂

(h)
obs (AL)

N̂(A)

(
ŶAL,obs − ŶAL

)2

+
N̂

(h)
miss(AL)

N̂(A)

(
ŶAL,miss − ŶAL

)2

Using the same ideas for

1

N̂(A)

n∑
i=1

(
Yi − ŶAR

)2
1

X̂i,in∈A, z≤X̂
(h)
i,out≤b(h) ,



Appendix A. Decomposition of the CART Criterion 101

the CART criterion can be written as

Ln (A, d,w) =L1,n(A, d) + L2,n (A, d,w) + L3,n (A, d,w) + L4,n (A, d,w)

where

L1,n(A, d) =
1

N̂(A)

n∑
i=1

(
Yi − ŶA,obs

)2
1

X̂i,in∈A,M
(h)
i =0

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAL,obs

)2
1

X̂i,in∈A, a(h)≤X(h)
i ≤z,M

(h)
i =0

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAR,obs

)2
1

X̂i,in∈A, z≤X
(h)
i ≤b(h),M

(h)
i =0

L2,n(A, d,w) =
1

N̂(A)

n∑
i=1

(
Yi − ŶA,miss

)2
1

X̂i,in∈A,M
(h)
i =1

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAL,miss

)2
1

X̂i,in∈A, a(h)≤X̂(h)
i,out≤z,M

(h)
i =1

− 1

N̂(A)

n∑
i=1

(
Yi − ŶAR,miss

)2
1

X̂i,in∈A, z≤X̂
(h)
i,out≤b(h),M

(h)
i =1

L3,n(A, d,w) =
N̂obs(A)

N̂(A)

(
ŶA,obs − ŶA

)2

−
N̂

(h)
obs (AL)

N̂(A)

(
ŶAL,obs − ŶAL

)2

−
N̂

(h)
obs (AR)

N̂(A)

(
ŶAR,obs − ŶAR

)2

L4,n(A, d,w) =
N̂miss(A)

N̂(A)

(
ŶA,miss − ŶA

)2

−
N̂

(h)
miss(AL)

N̂(A)

(
ŶAL,miss − ŶAL

)2

−
N̂

(h)
miss(AR)

N̂(A)

(
ŶAR,miss − ŶAR

)2





B
Tables for the MSE and Bias for Different Approaches

varying the Percentage of Missing Values

MAR1

Approach 0 5 10 20 40

No Rows 6.06± 0.06 6.84± 0.07 7.02± 0.07 7.37± 0.08 8.35± 0.11

No Columns 6.06± 0.06 19.79± 0.06 19.76± 0.06 19.77± 0.06 19.76± 0.06

Median 6.06± 0.06 6.54± 0.06 6.57± 0.05 6.78± 0.06 7.35± 0.07

Breiman 6.06± 0.06 6.59± 0.06 6.64± 0.06 6.75± 0.06 7.10± 0.06

Ishioka 6.06± 0.06 6.49± 0.06 6.56± 0.06 6.72± 0.06 7.12± 0.07

MissForest 6.06± 0.06 6.41± 0.06 6.47± 0.06 6.49± 0.06 6.64± 0.06

MIA 6.06± 0.06 6.41± 0.06 6.47± 0.06 6.63± 0.06 6.89± 0.07

Proposal 6.06± 0.06 6.53± 0.06 6.56± 0.06 6.68± 0.06 6.97± 0.06

Table B.1: Average mean squared error and its standard error for the different methods,
considering the MAR1 case. The three methods with the lower MSE are filled in blue,
while the three methods with the highest MSE are filled in orange.

Approach 60 80 90 95

No Rows 10.32± 0.14 14.81± 0.33 21.07± 0.54 26.47± 0.87

No Columns 19.75± 0.06 19.78± 0.06 19.77± 0.06 19.77± 0.06

Median 8.51± 0.09 10.65± 0.15 12.24± 0.21 14.17± 0.28

Breiman 7.90± 0.10 9.45± 0.13 11.40± 0.26 13.70± 0.34

Ishioka 7.75± 0.08 9.06± 0.12 10.23± 0.13 11.39± 0.20

MissForest 6.97± 0.06 7.80± 0.09 8.70± 0.14 10.32± 0.35

MIA 7.42± 0.08 8.46± 0.11 9.83± 0.14 11.13± 0.20

Proposal 7.32± 0.07 8.11± 0.08 8.66± 0.08 9.22± 0.11

Table B.2: (Cont.). Average mean squared error and its standard error for the different
methods, considering the MAR1 case. The three methods with the lower MSE are filled
in blue, while the three methods with the highest MSE are filled in orange.

103



104

Approach 0 5 10 20 40

No Rows 0.00± 0.02 −0.14± 0.02 −0.15± 0.02 −0.19± 0.03 −0.32± 0.03

No Columns 0.00± 0.02 0.01± 0.03 0.01± 0.03 0.01± 0.03 0.01± 0.03

Median 0.00± 0.02 −0.06± 0.02 −0.08± 0.02 −0.09± 0.02 −0.20± 0.03

Breiman 0.00± 0.02 −0.04± 0.02 −0.04± 0.02 −0.05± 0.03 −0.09± 0.03

Ishioka 0.00± 0.02 −0.04± 0.02 −0.05± 0.02 −0.07± 0.02 −0.16± 0.03

MissForest 0.00± 0.02 −0.05± 0.02 −0.06± 0.02 −0.07± 0.02 −0.13± 0.02

MIA 0.00± 0.02 −0.08± 0.02 −0.12± 0.02 −0.14± 0.03 −0.26± 0.03

Proposal 0.00± 0.02 −0.08± 0.02 −0.09± 0.02 −0.10± 0.02 −0.20± 0.03

Table B.3: Average bias and its standard error for the different methods, considering
the MAR1 case. The three more unbiased methods are filled in blue, while the three
more biased methods are filled in orange.

Approach 60 80 90 95

No Rows −0.57± 0.04 −1.31± 0.08 −1.98± 0.11 −2.08± 0.16

No Columns 0.00± 0.03 −0.02± 0.03 −0.01± 0.03 −0.02± 0.03

Median −0.35± 0.03 −0.67± 0.03 −0.73± 0.05 −0.82± 0.04

Breiman −0.12± 0.03 −0.13± 0.03 −0.14± 0.03 −0.21± 0.05

Ishioka −0.29± 0.03 −0.54± 0.03 −0.59± 0.05 −0.59± 0.05

MissForest −0.22± 0.03 −0.49± 0.04 −0.51± 0.05 −0.62± 0.07

MIA −0.41± 0.03 −0.77± 0.03 −0.87± 0.05 −0.94± 0.05

Proposal −0.32± 0.03 −0.42± 0.04 −0.56± 0.03 −0.57± 0.03

Table B.4: (Cont). Average bias and its standard error for the different methods,
considering the MAR1 case. The three more unbiased methods are filled in blue, while
the three more biased methods are filled in orange.



Appendix B. Tables for the MSE and Bias for Different Approaches varying the
Percentage of Missing Values 105

MAR2

Approach 0 5 10 20 40

No Rows 6.06± 0.06 6.98± 0.07 7.08± 0.07 7.47± 0.07 8.49± 0.10

No Columns 6.06± 0.06 19.78± 0.06 19.78± 0.06 19.75± 0.06 19.74± 0.06

Median 6.06± 0.06 6.52± 0.06 6.64± 0.06 6.75± 0.06 7.44± 0.07

Breiman 6.06± 0.06 6.54± 0.07 6.59± 0.06 6.74± 0.07 7.23± 0.07

Ishioka 6.06± 0.06 6.47± 0.06 6.57± 0.06 6.74± 0.07 7.16± 0.07

MissForest 6.06± 0.06 6.46± 0.06 6.48± 0.06 6.48± 0.06 6.64± 0.06

MIA 6.06± 0.06 6.41± 0.06 6.46± 0.06 6.58± 0.06 6.98± 0.07

Proposal 6.06± 0.06 6.59± 0.06 6.62± 0.06 6.75± 0.07 7.05± 0.06

Table B.5: Average mean squared error and its standard error for the different methods,
considering the MAR2 case. The three methods with the lower MSE are filled in blue,
while the three methods with the highest MSE are filled in orange.

Approach 60 80 90 95

No Rows 10.65± 0.16 14.71± 0.29 18.57± 0.40 22.94± 0.72

No Columns 19.78± 0.06 19.77± 0.06 19.77± 0.06 19.77± 0.06

Median 8.62± 0.10 10.45± 0.13 12.31± 0.22 13.32± 0.23

Breiman 8.10± 0.09 9.49± 0.17 10.79± 0.20 12.74± 0.27

Ishioka 7.97± 0.09 8.82± 0.11 9.66± 0.14 10.83± 0.16

MissForest 7.08± 0.07 7.61± 0.08 8.34± 0.12 9.41± 0.25

MIA 7.55± 0.09 8.45± 0.10 9.18± 0.11 10.63± 0.18

Proposal 7.52± 0.07 7.99± 0.08 8.44± 0.10 8.93± 0.09

Table B.6: (Cont.). Average mean squared error and its standard error for the different
methods, considering the MAR2 case. The three methods with the lower MSE are filled
in blue, while the three methods with the highest MSE are filled in orange.



106

Approach 0 5 10 20 40

No Rows 0.00± 0.02 −0.19± 0.02 −0.20± 0.02 −0.25± 0.03 −0.46± 0.03

No Columns 0.00± 0.02 0.02± 0.03 0.02± 0.03 0.01± 0.03 0.01± 0.03

Median 0.00± 0.02 −0.07± 0.02 −0.09± 0.02 −0.15± 0.02 −0.28± 0.02

Breiman 0.00± 0.02 −0.03± 0.02 −0.05± 0.02 −0.08± 0.02 −0.08± 0.03

Ishioka 0.00± 0.02 −0.04± 0.02 −0.06± 0.02 −0.10± 0.02 −0.22± 0.02

MissForest 0.00± 0.02 −0.05± 0.02 −0.06± 0.02 −0.10± 0.02 −0.16± 0.02

MIA 0.00± 0.02 −0.08± 0.02 −0.12± 0.02 −0.17± 0.02 −0.36± 0.02

Proposal 0.01± 0.02 −0.10± 0.02 −0.11± 0.02 −0.15± 0.02 −0.25± 0.02

Table B.7: Average bias and its standard error for the different methods, considering
the MAR2 case. The three more unbiased methods are filled in blue, while the three
more biased methods are filled in orange.

Approach 60 80 90 95

No Rows −0.80± 0.04 −1.21± 0.07 −1.32± 0.10 −1.24± 0.16

No Columns 0.02± 0.03 −0.01± 0.03 −0.01± 0.03 −0.01± 0.03

Median −0.44± 0.03 −0.46± 0.05 −0.49± 0.04 −0.58± 0.03

Breiman −0.10± 0.03 −0.12± 0.03 −0.14± 0.03 −0.18± 0.03

Ishioka −0.38± 0.03 −0.38± 0.03 −0.43± 0.04 −0.48± 0.05

MissForest −0.30± 0.03 −0.36± 0.04 −0.39± 0.05 −0.41± 0.06

MIA −0.52± 0.03 −0.61± 0.03 −0.64± 0.05 −0.67± 0.06

Proposal −0.28± 0.04 −0.38± 0.02 −0.43± 0.03 −0.47± 0.04

Table B.8: (Cont). Average bias and its standard error for the different methods,
considering the MAR2 case. The three more unbiased methods are filled in blue, while
the three more biased methods are filled in orange.



Appendix B. Tables for the MSE and Bias for Different Approaches varying the
Percentage of Missing Values 107

MAR3

Approach 0 5 10 20 40

No Rows 6.06± 0.06 7.08± 0.08 7.07± 0.08 7.68± 0.09 9.67± 0.18

No Columns 6.06± 0.06 19.79± 0.06 19.74± 0.06 19.78± 0.06 19.75± 0.06

Median 6.06± 0.06 6.54± 0.06 6.60± 0.05 6.96± 0.06 7.82± 0.08

Breiman 6.06± 0.06 6.55± 0.06 6.67± 0.06 6.84± 0.06 7.51± 0.08

Ishioka 6.06± 0.06 6.63± 0.06 6.67± 0.06 6.99± 0.07 7.73± 0.08

MissForest 6.06± 0.06 6.74± 0.06 6.72± 0.06 6.78± 0.06 7.02± 0.06

MIA 6.06± 0.06 6.52± 0.06 6.54± 0.06 6.81± 0.06 7.33± 0.06

Proposal 6.06± 0.06 6.77± 0.06 6.86± 0.07 7.05± 0.07 7.55± 0.07

Table B.9: Average mean squared error and its standard error for the different methods,
considering the MAR3 case. The three methods with the lower MSE are filled in blue,
while the three methods with the highest MSE are filled in orange.

Approach 60 80 90 95

No Rows 12.74± 0.25 17.92± 0.44 24.15± 0.68 28.28± 0.83

No Columns 19.77± 0.06 19.80± 0.06 19.76± 0.06 19.76± 0.06

Median 9.19± 0.11 10.85± 0.15 12.43± 0.20 14.05± 0.37

Breiman 8.62± 0.10 10.00± 0.15 11.47± 0.23 13.93± 0.27

Ishioka 8.64± 0.09 9.58± 0.10 10.65± 0.13 11.95± 0.22

MissForest 7.56± 0.08 8.23± 0.11 9.00± 0.15 10.67± 0.37

MIA 8.17± 0.08 9.11± 0.09 10.09± 0.12 11.50± 0.23

Proposal 8.22± 0.08 8.92± 0.08 9.28± 0.10 9.42± 0.10

Table B.10: (Cont.). Average mean squared error and its standard error for the different
methods, considering the MAR3 case. The three methods with the lower MSE are filled
in blue, while the three methods with the highest MSE are filled in orange.



108

Approach 0 5 10 20 40

No Rows 0.00± 0.02 −0.22± 0.03 −0.21± 0.03 −0.38± 0.03 −0.81± 0.04

No Columns 0.00± 0.02 0.01± 0.03 0.02± 0.03 0.01± 0.03 0.01± 0.03

Median 0.00± 0.02 −0.11± 0.02 −0.15± 0.02 −0.23± 0.02 −0.44± 0.02

Breiman 0.00± 0.02 −0.04± 0.02 −0.06± 0.02 −0.08± 0.02 −0.12± 0.02

Ishioka 0.00± 0.02 −0.05± 0.02 −0.11± 0.02 −0.19± 0.02 −0.35± 0.03

MissForest 0.00± 0.02 −0.09± 0.02 −0.13± 0.02 −0.17± 0.02 −0.29± 0.02

MIA 0.00± 0.02 −0.16± 0.02 −0.18± 0.02 −0.29± 0.02 −0.52± 0.03

Proposal 0.00± 0.02 −0.17± 0.02 −0.19± 0.02 −0.27± 0.02 −0.43± 0.02

Table B.11: Average bias and its standard error for the different methods, considering
the MAR3 case. The three more unbiased methods are filled in blue, while the three
more biased methods are filled in orange.

Approach 60 80 90 95

No Rows −1.33± 0.06 −2.00± 0.09 −2.62± 0.11 −2.53± 0.16

No Columns 0.01± 0.03 −0.01± 0.03 −0.02± 0.03 −0.01± 0.03

Median −0.66± 0.03 −0.82± 0.05 −0.86± 0.03 −0.87± 0.04

Breiman −0.11± 0.03 −0.11± 0.03 −0.15± 0.03 −0.23± 0.04

Ishioka −0.56± 0.03 −0.60± 0.03 −0.60± 0.04 −0.70± 0.05

MissForest −0.52± 0.03 −0.57± 0.04 −0.71± 0.06 −0.70± 0.06

MIA −0.78± 0.03 −1.00± 0.03 −1.01± 0.05 −1.13± 0.05

Proposal −0.52± 0.04 −0.60± 0.03 −0.73± 0.03 −0.70± 0.04

Table B.12: (Cont). Average bias and its standard error for the different methods,
considering the MAR3 case. The three more unbiased methods are filled in blue, while
the three more biased methods are filled in orange.



Appendix B. Tables for the MSE and Bias for Different Approaches varying the
Percentage of Missing Values 109

MAR4

Approach 0 5 10 20 40

No Rows 6.06± 0.06 7.31± 0.07 7.26± 0.08 7.70± 0.10 8.89± 0.10

No Columns 6.06± 0.06 19.76± 0.06 19.79± 0.06 19.77± 0.06 19.79± 0.06

Median 6.06± 0.06 6.48± 0.06 6.58± 0.06 6.83± 0.06 7.45± 0.07

Breiman 6.06± 0.06 6.55± 0.06 6.58± 0.06 6.78± 0.06 7.22± 0.06

Ishioka 6.06± 0.06 6.43± 0.06 6.48± 0.06 6.61± 0.06 7.07± 0.08

MissForest 6.06± 0.06 6.61± 0.06 6.61± 0.06 6.65± 0.06 6.79± 0.06

MIA 6.06± 0.06 6.54± 0.06 6.58± 0.06 6.71± 0.06 7.06± 0.06

Proposal 6.06± 0.06 6.50± 0.06 6.53± 0.05 6.63± 0.06 6.83± 0.06

Table B.13: Average mean squared error and its standard error for the different methods,
considering the MAR4 case. The three methods with the lower MSE are filled in blue,
while the three methods with the highest MSE are filled in orange.

Approach 60 80 90 95

No Rows 10.80± 0.15 14.35± 0.24 17.79± 0.30 22.65± 0.83

No Columns 19.78± 0.06 19.77± 0.06 19.77± 0.06 19.77± 0.06

Median 8.59± 0.10 10.25± 0.14 12.49± 0.23 13.31± 0.27

Breiman 8.01± 0.09 8.98± 0.11 10.82± 0.25 12.72± 0.37

Ishioka 7.57± 0.07 8.17± 0.08 9.11± 0.14 10.52± 0.15

MissForest 7.09± 0.06 7.54± 0.06 8.25± 0.12 9.48± 0.37

MIA 7.58± 0.08 8.12± 0.08 8.92± 0.13 10.19± 0.23

Proposal 7.20± 0.06 7.62± 0.07 8.07± 0.07 8.71± 0.10

Table B.14: (Cont.). Average mean squared error and its standard error for the different
methods, considering the MAR4 case. The three methods with the lower MSE are filled
in blue, while the three methods with the highest MSE are filled in orange.



110

Approach 0 5 10 20 40

No Rows 0.00± 0.02 0.28± 0.03 0.27± 0.03 0.27± 0.03 0.25± 0.03

No Columns 0.00± 0.02 0.01± 0.04 0.01± 0.03 0.01± 0.03 0.01± 0.03

Median 0.00± 0.02 0.04± 0.02 0.09± 0.02 0.15± 0.02 0.14± 0.02

Breiman 0.00± 0.02 0.09± 0.02 0.08± 0.02 0.08± 0.02 0.12± 0.02

Ishioka 0.00± 0.02 −0.01± 0.02 0.05± 0.02 0.08± 0.02 0.09± 0.02

MissForest 0.00± 0.02 0.05± 0.02 0.07± 0.02 0.08± 0.02 0.09± 0.02

MIA 0.00± 0.02 0.12± 0.02 0.17± 0.02 0.24± 0.02 0.26± 0.02

Proposal 0.00± 0.02 0.04± 0.02 0.04± 0.02 0.13± 0.02 0.13± 0.02

Table B.15: Average bias and its standard error for the different methods, considering
the MAR4 case. The three more unbiased methods are filled in blue, while the three
more biased methods are filled in orange.

Approach 60 80 90 95

No Rows 0.29± 0.05 0.24± 0.08 0.23± 0.10 0.56± 0.15

No Columns 0.00± 0.03 −0.02± 0.03 −0.02± 0.03 −0.02± 0.03

Median 0.14± 0.03 0.15± 0.03 0.15± 0.04 0.26± 0.05

Breiman 0.11± 0.03 0.11± 0.03 0.10± 0.03 0.10± 0.04

Ishioka 0.10± 0.03 0.11± 0.03 0.11± 0.04 0.12± 0.06

MissForest 0.10± 0.03 0.10± 0.04 0.14± 0.05 0.23± 0.07

MIA 0.24± 0.03 0.25± 0.04 0.26± 0.05 0.30± 0.06

Proposal 0.13± 0.03 0.13± 0.03 0.13± 0.04 0.16± 0.03

Table B.16: (Cont). Average bias and its standard error for the different methods,
considering the MAR4 case. The three more unbiased methods are filled in blue, while
the three more biased methods are filled in orange.



Appendix B. Tables for the MSE and Bias for Different Approaches varying the
Percentage of Missing Values 111

LOG

Approach 0 5 10 20 40

No Rows 6.06± 0.06 6.85± 0.08 6.95± 0.08 7.38± 0.09 8.20± 0.10

No Columns 6.06± 0.06 19.76± 0.06 19.79± 0.06 19.76± 0.06 19.76± 0.06

Median 6.06± 0.06 6.45± 0.06 6.53± 0.07 6.74± 0.07 7.24± 0.08

Breiman 6.06± 0.06 6.49± 0.06 6.54± 0.06 6.69± 0.07 7.09± 0.08

Ishioka 6.06± 0.06 6.35± 0.06 6.42± 0.06 6.60± 0.06 6.92± 0.07

MissForest 6.06± 0.06 6.37± 0.06 6.38± 0.06 6.42± 0.06 6.55± 0.06

MIA 6.06± 0.06 6.36± 0.06 6.42± 0.06 6.53± 0.06 6.74± 0.07

Proposal 6.06± 0.06 6.41± 0.06 6.47± 0.06 6.54± 0.06 6.79± 0.07

Table B.17: Average mean squared error and its standard error for the different methods,
considering the LOG case. The three methods with the lower MSE are filled in blue,
while the three methods with the highest MSE are filled in orange.

Approach 60 80 90 95

No Rows 9.67± 0.13 12.81± 0.20 17.68± 0.42 22.66± 0.65

No Columns 19.78± 0.06 19.77± 0.06 19.78± 0.06 19.78± 0.06

Median 8.15± 0.08 10.12± 0.15 12.21± 0.22 13.42± 0.25

Breiman 7.58± 0.08 8.96± 0.16 10.77± 0.24 12.48± 0.31

Ishioka 7.34± 0.08 8.13± 0.10 9.39± 0.15 10.63± 0.19

MissForest 6.76± 0.06 7.30± 0.07 8.25± 0.11 9.51± 0.25

MIA 7.11± 0.08 7.84± 0.10 8.95± 0.15 10.22± 0.18

Proposal 6.92± 0.07 7.36± 0.07 8.01± 0.08 8.88± 0.09

Table B.18: (Cont.). Average mean squared error and its standard error for the different
methods, considering the LOG case. The three methods with the lower MSE are filled
in blue, while the three methods with the highest MSE are filled in orange.



112

Approach 0 5 10 20 40

No Rows 0.00± 0.02 −0.04± 0.02 −0.04± 0.03 −0.08± 0.03 −0.11± 0.03

No Columns 0.00± 0.02 0.01± 0.03 0.02± 0.03 0.01± 0.03 0.02± 0.03

Median 0.00± 0.02 0.01± 0.02 0.00± 0.02 −0.01± 0.02 −0.05± 0.02

Breiman 0.00± 0.02 0.01± 0.02 0.01± 0.02 −0.01± 0.02 −0.03± 0.03

Ishioka 0.00± 0.02 0.01± 0.02 0.00± 0.02 −0.02± 0.02 −0.03± 0.03

MissForest 0.00± 0.02 0.00± 0.02 0.00± 0.02 0.00± 0.02 −0.04± 0.02

MIA 0.00± 0.02 0.03± 0.02 0.02± 0.02 −0.01± 0.03 −0.07± 0.03

Proposal 0.01± 0.02 −0.01± 0.02 −0.01± 0.02 −0.03± 0.02 −0.08± 0.02

Table B.19: Average bias and its standard error for the different methods, considering
the LOG case. The three more unbiased methods are filled in blue, while the three more
biased methods are filled in orange.

Approach 60 80 90 95

No Rows −0.14± 0.04 −0.30± 0.07 −0.72± 0.11 −0.97± 0.17

No Columns 0.00± 0.03 −0.02± 0.03 −0.02± 0.03 −0.02± 0.03

Median −0.09± 0.03 −0.19± 0.03 −0.26± 0.05 −0.28± 0.05

Breiman −0.03± 0.03 −0.04± 0.03 −0.07± 0.03 −0.13± 0.04

Ishioka −0.08± 0.03 −0.17± 0.03 −0.23± 0.05 −0.28± 0.05

MissForest −0.06± 0.03 −0.11± 0.03 −0.26± 0.06 −0.29± 0.07

MIA −0.10± 0.03 −0.24± 0.04 −0.32± 0.05 −0.35± 0.06

Proposal −0.09± 0.03 −0.16± 0.03 −0.25± 0.04 −0.22± 0.04

Table B.20: (Cont). Average bias and its standard error for the different methods,
considering the LOG case. The three more unbiased methods are filled in blue, while
the three more biased methods are filled in orange.



Appendix B. Tables for the MSE and Bias for Different Approaches varying the
Percentage of Missing Values 113

DEPY

Approach 0 5 10 20 40

No Rows 6.06± 0.06 7.44± 0.09 7.79± 0.08 8.49± 0.12 10.81± 0.18

No Columns 6.06± 0.06 19.76± 0.06 19.78± 0.06 19.78± 0.06 19.75± 0.05

Median 6.06± 0.06 6.77± 0.06 6.82± 0.06 7.15± 0.07 7.87± 0.08

Breiman 6.06± 0.06 6.75± 0.06 6.92± 0.07 7.05± 0.07 7.76± 0.08

Ishioka 6.06± 0.06 6.70± 0.07 6.88± 0.07 7.26± 0.07 8.14± 0.09

MissForest 6.06± 0.06 6.58± 0.06 6.57± 0.06 6.68± 0.06 6.87± 0.07

MIA 6.06± 0.06 6.76± 0.07 6.93± 0.07 7.23± 0.08 7.80± 0.08

Proposal 6.06± 0.06 6.59± 0.06 6.67± 0.06 6.86± 0.06 7.37± 0.07

Table B.21: Average mean squared error and its standard error for the different methods,
considering the DEPY case. The three methods with the lower MSE are filled in blue,
while the three methods with the highest MSE are filled in orange.

Approach 60 80 90 95

No Rows 16.37± 0.29 23.87± 0.26 28.53± 0.41 31.78± 0.56

No Columns 19.75± 0.06 19.77± 0.06 19.77± 0.06 19.77± 0.06

Median 9.86± 0.13 13.67± 0.20 15.43± 0.23 16.01± 0.26

Breiman 9.41± 0.12 13.10± 0.20 15.46± 0.27 16.07± 0.25

Ishioka 10.04± 0.13 12.18± 0.14 13.07± 0.19 13.57± 0.22

MissForest 7.75± 0.08 9.32± 0.16 10.66± 0.31 12.62± 0.54

MIA 9.47± 0.12 11.72± 0.15 12.86± 0.16 13.97± 0.27

Proposal 8.57± 0.11 8.88± 0.10 9.05± 0.09 9.07± 0.09

Table B.22: (Cont.). Average mean squared error and its standard error for the different
methods, considering the DEPY case. The three methods with the lower MSE are filled
in blue, while the three methods with the highest MSE are filled in orange.



114

Approach 0 5 10 20 40

No Rows 0.00± 0.02 0.46± 0.02 0.55± 0.03 0.70± 0.03 1.09± 0.03

No Columns 0.00± 0.02 0.01± 0.04 0.01± 0.04 0.02± 0.03 0.02± 0.03

Median 0.00± 0.02 0.11± 0.02 0.12± 0.02 0.19± 0.02 0.37± 0.02

Breiman 0.00± 0.02 0.04± 0.02 0.04± 0.02 0.07± 0.02 0.08± 0.03

Ishioka 0.00± 0.02 0.06± 0.02 0.06± 0.02 0.12± 0.02 0.23± 0.03

MissForest 0.00± 0.02 0.06± 0.02 0.05± 0.02 0.08± 0.02 0.11± 0.02

MIA 0.00± 0.02 0.37± 0.02 0.40± 0.02 0.54± 0.02 0.78± 0.03

Proposal 0.00± 0.02 0.20± 0.02 0.22± 0.02 0.29± 0.02 0.34± 0.04

Table B.23: Average bias and its standard error for the different methods, considering
the DEPY case. The three more unbiased methods are filled in blue, while the three
more biased methods are filled in orange.

Approach 60 80 90 95

No Rows 1.80± 0.04 2.54± 0.04 2.82± 0.07 2.95± 0.09

No Columns 0.02± 0.03 −0.03± 0.03 −0.01± 0.03 −0.02± 0.03

Median 0.67± 0.03 1.03± 0.03 1.05± 0.03 1.04± 0.05

Breiman 0.12± 0.03 0.14± 0.03 0.17± 0.03 0.24± 0.04

Ishioka 0.45± 0.03 0.69± 0.03 0.75± 0.03 0.74± 0.04

MissForest 0.20± 0.03 0.39± 0.03 0.39± 0.03 0.48± 0.06

MIA 1.13± 0.03 1.44± 0.03 1.38± 0.03 1.29± 0.04

Proposal 0.44± 0.03 0.55± 0.04 0.69± 0.03 0.77± 0.03

Table B.24: (Cont). Average bias and its standard error for the different methods,
considering the DEPY case. The three more unbiased methods are filled in blue, while
the three more biased methods are filled in orange.


	Introduction
	Statistical Learning with Missing Data
	Regression and Classification
	Random Forests
	Introduction to Random Forests
	Split Criteria for Classification
	Formal Definitions for the CART Criterion

	Neural Networks
	Dimensionality Reduction
	Principal Component Analysis (PCA)
	Autoencoders

	Mechanisms for Missing Data
	Previous Approaches to Handle Missing Data Using Random Forests
	Previous Approaches Implementing Imputation of Missing Values
	Previous Approaches Without Implementing Imputation of Missing Values

	A Random Forest Algorithm with Partial Imputations for Missing Entries

	Simulation Study of a Random Forest Algorithm with Interval Imputation of Missing Entries
	Bibliographic Discussion
	Simulation Framework
	Comparison Study
	Simple Baselines
	Imputation Approaches Based on Random Forests
	Missing Incorporated in Attributes

	Varying the Rate of Missing Values
	Decomposition of the CART Criterion
	Discussion and Future Work

	Consistency of a Random Forest Algorithm with Interval Imputation of Missing Entries for an Additive Model
	Consistency of a Random Forest Algorithm with Missing Entries for an Additive Model
	Low Values of the Theoretical CART Criterion Implies Minimum Variation of the Regression Function
	The Empirical CART Criterion Converges to Zero in Probability
	Asymptotically the Regression Function has no Variation on Final Nodes

	Use of Autoencoders for the Reconstruction of Missing Data
	Autoencoders
	Example (MNIST Data Set)

	Missing Data with Denoising Autoencoders
	Example (MNIST Data Set, Continuation)
	Extensions of Denoising Autoencoders

	Variational Inference
	Variational Autoencoders
	Bernoulli Likelihood
	Example (MNIST Data Set, Continuation)

	Variational Autoencoders with Missing Values
	Example (MNIST Data Set, Continuation)
	Extensions of Variational Autoencoders

	Recommender Systems with Autoencoders and Future Work

	References
	Appendices
	Decomposition of the CART Criterion
	Tables for the MSE and Bias for Different Approaches varying the Percentage of Missing Values

