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Irving Gómez Méndez

August-December, 2021



Transformation of Random Variables



Transformation Simulation

Introduction

We know the probability distribution of a random variable and
are interested in determining the distribution of some function
of it. For instance, suppose that we know the distribution of X
and want to find the distribution of g(X). To do so, it is
necessary to express the event that g(X) ≤ y in terms of X
being in some set.
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Example
Let X ∼ U(0, 1). We obtain the distribution of the random
variable Y , defined by Y = Xn , as follows: For 0 < y < 1,

FY (y) = P(Y ≤ y)
= P(Xn ≤ y)
= P(X ≤ y1/n)
= FX(y1/n)
= y1/n

For instance, the density function of Y is given by

fY (y) =
{

1
ny

1/n−1 if 0 ≤ y ≤ 1,
0 otherwise.

That is Y ∼ Beta(1/n, 1).
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Let X be a continuous random variable with distribution
function FX . Suppose that g(x) is an increasing function .
Then the distribution function of the random variable
Y = g(X) is given by

FY (y) = FX(g−1(x)).
Proof

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)
= P(X ≤ g−1(y)) = FX(g−1(y)).

If g is a decreasing function. Then the distribution function of
the random variable Y = g(X) is given by

FY (y) = 1− FX(g−1(x)).
Proof

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)
= P(X ≥ g−1(y)) = 1− FX(g−1(y)).
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Moreover, if X has density fX , then a simple differentiation
shows that the density of the random variable Y = g(X) is
given by

fY (y) =
∣∣∣∣ ddyg−1(y)

∣∣∣∣ fX(g−1(y)).
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Examples

1. Let X ∼ U(0, 1) and consider the random variable
Y = g(X) = − 1

λ log(X), with λ > 0. In this case
g−1(y) = e−λy and the density function of Y is given by

fY (y) = λe−λyfX(e−λy)

= λe−λy1 e−λy∈(0,1)

= λe−λy1−λy∈(−∞,0)

= λe−λy1 y∈(0,∞).

That is, Y ∼ Exp(λ).
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2. Let T ∼Weibull(η, β), with density

f(t) = β

η

(
t

η

)β−1
e−(t/η)β

1 t≥0

and distribution function

F (t) = 1− e−(t/η)β ,

where η, β > 0. Consider the random variable
Y = g(T ) =

(
T
η

)β
. In this case g−1(y) = ηy1/β, note that g

is an increasing function. Hence, the distribution function
of Y is given by

F (y) = 1− e−(g−1(y)/η)β

= 1− e−y

which is the distribution function of a random variable
with distribution Exp(1).

8



Transformation Simulation

We arrive to the same conclusion calculating the density of Y ,
for this, note that

d

dy
g−1(y) = η

β
y

1
β
−1

so the density of Y is given by

f(y) =
(
d

dy
g−1(y)

)
β

η

(
g−1(y)
η

)β−1

e−(g−1(y)/η)β
1 g−1(y)≥0

= η

β
y

1
β
−1β

η

ηy 1
β

η

β−1

exp

−
(
ηy1/β

η

)β1 ηy1/β≥0

= y
1
β
−1
y

1− 1
β e−y1 y≥0

= e−y1 y≥0.

That is, Y ∼ Exp(1).
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Inverse Transformation Method
Let F be an increasing distribution function in x such that
0 < F (x) < 1 and let U ∼ U(0, 1). Then the variable
Z = F−1(U) has density F .
Proof
In this case Z = g(U) = F−1(U), so g−1(z) = F (z) and the
distribution function of Z is given by

FZ(z) = FU (F (z)) = F (z),

hence Z ∼ F . �
The previous result is true in general if we use the generalized
inverse F← of the function F when there is not inverse, defined
as

F←(y) = inf{x, s.t. F (x) ≥ y}.

That is F← is the quantile function of the distribution.
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These results give us a method to simulate a random variable
with distribution function F . We generate a value u form a
uniform variable in (0, 1) and evaluate the generalized inverse in
u: F←(u).
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