
Actuary Probability I
Expected Values and Moments
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Statistics Inequalities Conditional Expectation Prob. Gen. Fun. Moment Gen. Fun.

Moments, Expected Value
If X is a discrete random variable, the moment of order n of X
is given by

E[Xn] =
∑
i

xni P(X = xi),

always that the series converges absolutely. If the series
diverges, we say that the moment does not exists.

If X is a continuous random variable with density f(x), the
moment of order n of X is given by

E[Xn] =
∫ ∞
−∞

xnf(x)dx,

always that the integral converges absolutely.

The first moment, corresponding to n = 1, is known as the
mean or expected value of X, denoted by µ.
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Central Moments, Variance, Standard Deviation

The central moment of order n is the moment of order n of the
variable X − µ, always that µ exists. The nth central moment
is denoted as µn. The first central moment is zero. The second
central moment is called the variance of X, denoted as V[X].
We can show that

V[X] = E[(X − µ)2] = E[X]− µ.

The squared root of the variance is called the standard
deviation of X, denoted by sd(X). It is common to denote the
variance of X by σ2 and the standard deviation by σ.
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Coefficient of Variation

The coefficient of variation cv of a random variable X with
mean µ 6= 0 and standard deviation σ is defined as the ratio

cv = σ

|µ|
.

Empirical results in agriculture studies has shown that when
cv ≤ 0.3, the mean is “representative” of the random variable,
while larger values than 0.3 are translated as an
“unrepresentative” mean.
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The coefficient of variation is common in applied probability
fields such as renewal theory, queueing theory, and reliability
theory. These fields consider positive random variables, and
hence µ > 0. The standard deviation of an exponential
distribution is equal to its mean, so its coefficient of variation is
equal to 1. Distributions with cv < 1 (such as an Erlang
distribution) are considered low-variance, while those with
cv > 1 are considered high-variance.
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Median and Mode

The median of a random variable X is any value ν such that

P(X ≥ ν) ≥ 1
2 , P(X ≥ ν) ≥ 1

2 .

If X is a discrete random variable, the mode is the value x at
which the probability mass function takes its maximum value.
The mode is not necessarily unique to a given discrete
distribution, since the probability mass function may take the
same maximum value at several points x1, x2, . . . The most
extreme case occurs in uniform distributions, where all values
occur equally frequently.
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When the density function of a continuous distribution has
multiple local maxima it is common to refer to all of the local
maxima as modes of the distribution. Such a continuous
distribution is called multimodal (as opposed to unimodal). A
mode of a continuous probability distribution is often
considered to be any value x at which its density function has a
locally maximum value, so any peak is a mode.
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Skewness

The skewness is a measure of the asymmetry of the probability
distribution of a real-valued random variable about its mean.
The skewness value can be positive, zero, negative, or undefined.
The coefficient of skewness of a random variable X is defined by

µ̃3 = E
[(

X − µ
σ

)3
]

= µ3
σ3
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Kurtosis

The kurtosis is a measure of the ”tailedness” of the probability
distribution of a real-valued random variable. It is related to
the tails of the distribution, higher kurtosis corresponds to
greater extremity of outliers. The kurtosis of a random variable
X is defined as

κ(X) = E
[(

X − µ
σ

)4
]

= µ4
σ4 .

A related quantity is the excess of kurtosis, defined as κ(X)− 3.
Some authors use the excess of kurtosis as the definition of
kurtosis. Random variables whose excess of kurtosis is negative
are referred as sub-gaussian, whereas radom variables whose
excess of kurtosis is positive are referred as super-gaussian.
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Quantiles and Percentiles
Let F : R→ [0, 1] be the distribution function of a random
variable X, we define the quantile function Q : (0, 1)→ R as the
generalized inverse of F , that is

Q(p) = inf{x, s.t. F (x) ≥ p}.

The quantile x of probability p of the distribution is such that

Q(p) = x

or, equivalently as the value x such that

F (x) = p.

The quantile is the lowest value for which the random variable
has accumulated a probability p.
The quantiles of probability p = n/100, n = 1, 2, . . . , 99 are
known as the percentiles of of probability n× 100%.
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Summary

I Central tendency statistics:
I Mean or expected value
I Median
I Mode

I Dispersion statistics:
I Variance
I Standard deviation
I Coefficient of variation

I Shape statistics:
I Skewness coefficient
I Kurtosis coefficient

I Location statistics:
I Quantiles (percentiles)

12



Statistics Inequalities Conditional Expectation Prob. Gen. Fun. Moment Gen. Fun.

Expected Value of a Function of a R.V.

If X is a random variable and g is a function then g(X) is also
a random variable. If X is discrete taking values xj , j = 1, 2, . . .
then the expected value of g(X) is given by

E[g(X)] =
∑
j

g(xj)P(X = xj),

always that the sum converges absolutely. IfX is continuous
with density f , the expected value of g(X) is given by

E[g(X)] =
∫
g(x)f(x)dx.
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Markov’s Inequality
If X is a non-negative random variable (X ≥ 0), then for any
t > 0,

P(X ≥ t) ≤ E[X]
t

.

Proof
We are going to present two proofs of Markov’s inequality, the
first one for continuous random variables and the second the
proof for continuous or discrete random variables.
(a.) If X has density f ,

E[X] =
∫ ∞

0
xf(x)dx =

∫ t

0
xf(x)dx+

∫ ∞
t

xf(x)dx

≥
∫ ∞
t

xf(x)dx ≥ t
∫ ∞
t

f(x)dx

≥ tP(X ≥ t).
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(b.) Since X is non-negative, then for all t > 0
X1X≥t ≥ t1X≥t, taking the expected value on both sides

E[t1X≥t] ≤ E[X1X≥t]

⇔E[1X≥t] ≤
E[X1X≥t]

t

⇔P(X ≥ t) ≤ E[X1X≥t]
t

≤ E[X]
t
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Chebyshev’s Inequality
If X is a random variable with mean µ and variance σ2, for any
t > 0,

P(|X − µ| ≥ t) ≤ σ2

t2
.

Proof
Since (X − µ)2 is a non-negative random variable, we can apply
Markov’s inequality

P((X − µ)2 ≥ t2) ≤ E[(X − µ)2]
t2

,

but (X − µ)2 ≥ t2 if and only if |X − µ| ≥ t, so

P(|X − µ| ≥ t2) ≤ σ2

t2
.
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Jensen’s Inequality

If X is a random variable and g is a convex function, then

g(E[X]) ≤ E[g(X)],

always that both expected values exist and are finite.
Proof
Expanding g(x) in a Taylor’s series expansion about µ = E[X]
yields

g(x) = g(µ) + g′(µ)(x− µ) + g′′(ξ)(x− µ)2

2
where ξ is some value between x and µ. Since g′′(ξ) ≥ 0, we
obtain

g(x) ≥ g(µ) + g′(µ)(x− µ).
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Hence,
g(X) ≥ g(µ) + g′(µ)(X − µ).

Taking expectations yields

E[g(X)] ≥ g(µ) + g′(µ)E[X − µ] = g(µ)

and the inequality is established.
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Joint Distribution
If we have a pair of random variables (X,Y ) defined in a
probability space (Ω,A,P), their joint distribution function is
given by

FXY (x, y) = F (x, y)P(X ≤ x, Y ≤ y).

If both distributions are discrete and take values xi, i ≥ 1 and
yj , j ≥ 1 respectively, their joint probability function is

pXY (xi, yj) = P(X = xi, Y = yj), i ≥ 1, j ≥ 1.

A joint distribution function has (joint) density if exists a
function fXY of two variables such that

FXY (x, y) =
∫ x

−∞

∫ y

−∞
fXY (s, t)dtds, for all x, y.
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Marginal Distributions
If both random variables are discrete, the marginal probability
functions are given by

pX(xi) =
∑
j

pXY (xi, yj) and pY (yj) =
∑
i

pXY (xi, yj).

If F has a joint density f , the marginal densities of X and Y
are given by

fX(x) =
∫ ∞
−∞

fXY (x, y)dy and fY (y) =
∫ ∞
−∞

fXY (x, y)dx.

If X and Y have joint distribution then

E[X + Y ] = E[X] + E[Y ]

when all these moments exist.
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Independence
If for any x and y F (x, y) = FX(x)× FY (y), then X and Y are
independent. If the variables are discrete with joint probability
pXY , they are independent if and only if

pXY (x, y) = pX(x)pY (y).

Similarly, if the variables are continuous with joint density
fXY (x, y), they are independent if and only if

fXY (x, y) = fX(x)fY (y).

If X and Y are independent r.v. with first moment finite, then
the product XY also has first moment finite and

E[XY ] = E[X]E[Y ].
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Covariance

If X and Y are r.v. with joint distribution, means µx and µY ,
and finite variances σ2

X and σ2
Y , the covariance of X and Y ,

denoted as σXY or Cov(X,Y ) is defined as

σXY = E[(X − µX)(Y − µY )] = E[XY ]− µXµY .

We say that X and Y are uncorrelated if σXY = 0.

Independent variables with finite variance are uncorrelated, but
there are uncorrelated variables that are not independent.
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Example

1. If X ∼ N (0, 1) and Y = X2, then
Cov(X,Y ) = E[XY ] = E[X3], and it can be shown that
third moment of a standard normal distribution is zero.
Moreover, all the odd moments of the standard normal
distribution are zero.

2. If X and Y are independent with variance σ2
X and σ2

Y

respectively, then the variance of the sum Z = X + Y is the
sum of the variances:

σ2
Z = σ2

X + σ2
Y .
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Conditional Probability and Conditional Expectation

Let X,Y be discrete random variables. The conditional
probability function pX|Y (x|y)of X given Y = y is defined by

pX|Y (x|y) = pXY (x, y)
pY (y) if pY (y) > 0.

Let g be a function such that E[g(X)] <∞. We define the
conditional expected value of g(X) given Y = y as

E[g(X)|Y = y] =
∑
x

g(x)pX|Y (x|y) if pY (y) > 0.

26



Statistics Inequalities Conditional Expectation Prob. Gen. Fun. Moment Gen. Fun.

Let X,Y be random variables with joint density fXY (x, y). We
define the conditional density

fX|Y (x|y) = fXY (x, y)
fY (y) if fY (y) > 0.

Let g be a function such that E[g(X)] <∞. We define the
conditional expected value of g(X) given Y = y as

E[g(X)|Y = y] =
∫
g(x)fX|Y (x|y)dx if fY (y) > 0.
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Expected Value Conditioned in an Event
Let X,Y be r.v. with joint distribution, and let I ⊂ R, then

E[X|Y ∈ I] = E[X1 Y ∈I ]
P(Y ∈ I) , if P(Y ∈ I) > 0.

Proof
(Discrete case.)

E[X|Y ∈ I] =
∑
i

xipX|Y (xi|Y ∈ I)

=
∑
i

xi
pXY (xi, Y ∈ I)
pY (Y ∈ I)

=
∑
i

∑
j:yj∈I xipXY (xi, yj)
P(Y ∈ I)

=
∑
i

∑
j xi1 yj∈IpXY (xi, yj)

P(Y ∈ I)

= E[X1 Y ∈I ]
P(Y ∈ I) . 28
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(Continuous case.)

E[X|Y ∈ I] =
∫
xfX|Y (x|Y ∈ I)dx

=
∫
fXY (x, Y ∈ I)
fY (Y ∈ I) dx

=
∫ ∫

I xfXY (x, y)dydx
P(Y ∈ I)

=
∫ ∫

x1 y∈IfXY (x, y)dydx
P(Y ∈ I)

= E[X1 Y ∈I ]
P(Y ∈ I) .
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In particular, if X is discrete with probability function p then

E[X|X ∈ I] = E[X1X∈I ]
P(X ∈ I) =

∑
i:xi∈I

xip(xi)∑
i:xi∈I

p(xi)
,

whereas if X is continuous with density function f then

E[X|X ∈ I] = E[X1X∈I ]
P(X ∈ I) =

∫
I

xf(x)dx

∫
I

f(x)dx
.
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Example
Let X ∼ Exp(λ), with density λe−λx1 x≥0 and let τ > 0, then

E[X|X > τ ] =
∫∞
τ xλe−λxdx

P(X > τ)

= eλτ
∫ ∞
τ

λxe−λxdx.

Take
u = λx, du = λdx,
dv = e−λxdx, v = − 1

λe
−λx

Doing integration by parts,

E[X|X > τ ] = eλτ
[
−xe−λx

∣∣∣∞
τ

+ 1
λ

∫ ∞
τ

λe−λxdx

]
= eλτ

[
τe−λτ + 1

λ
e−λτ

]
= τ + 1

λ
.
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Probability Generating Function

Consider a r.v. ξ with non-negative values ad probability
distribution

P(ξ = k) = pk, k = 0, 1, . . . .

The probability generating function (p.g.f.) φ(s) of the r.v. ξ
(or equivalently of its distribution) is defined as

φ(s) = E
[
sξ
]

=
∞∑
k=0

skpk, 0 ≤ s ≤ 1.

From the definition is immediate that

φ(1) =
∞∑
k=0

pk = 1.
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Properties of the p.g.f.
1. It is possible to recover the probabilities pk from φ with the

formula
pk = 1

k!
dkφ(s)
dsk

∣∣∣∣∣
s=0

.

For example,

φ(s) = p0 + p1s+ p2s
2 + · · · ⇒ po = φ(s)

dφ(s)
ds

= p1 + 2p2s+ 3p3s
2 + · · · ⇒ p1 = dφ(s)

ds

∣∣∣∣
s=0

2. If ξ1, . . . , ξn are independent r.v. with p.g.f.
φ1(s), φ2(s), . . . , φn(s), the p.g.f. of the sum
X = ξ1 + ξ2 + · · ·+ ξn is the product of the probability
generated functions

φX(s) = φ1(s)φ2(s) · · ·φn(s).
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3. The moments of a random variable that takes values in the
non-negative integers can be obtained differentiating the
probability generating function:

dφ(s)
ds

= p1 + 2p2s+ 3p3s
2 + · · · ,

hence

dφ(s)
ds

∣∣∣∣
s=1

= p1 + 2p2 + 3p3 + · · · = E[ξ].

For the second derivative we have

d2φ(s)
ds2 = 2p2 + 3 · 2p3s+ 4 · 3p4s

2 + · · · ,
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Evaluating in s = 1,

d2φ(s)
ds2

∣∣∣∣∣
s=1

= 2p2 + 3 · 2p3 + 4 · 3p4 + · · ·

=
∞∑
k=2

k(k − 1)pk

= E[ξ(ξ − 1)] = E[ξ2]− E[ξ]

so
E[ξ2] = d2φ(s)

ds2

∣∣∣∣∣
s=1

+ E[ξ] = dφ(s)
ds

∣∣∣∣
s=1

.
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Example

Suppose that ξ ∼ Pois(λ):

pk = P(ξ = k) = λk

k|
e−λ, k = 0, 1, . . . .

Its probability generating function is

φ(s) = E
[
sξ
]

=
∞∑
k=0

sk
λk

k|
e−λ

= e−λ
∞∑
k=0

(sλ)k

k! = e−λesλ

= e−λ(1−s).
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Hence,
dφ(s)
ds

= λe−λ(1−s),
dφ(s)
ds

∣∣∣∣
s=1

= λ

d2φ(s)
ds2 = λ2e−λ(1−s),

d2φ(s)
ds2

∣∣∣∣∣
s=1

= λ2

so, we have

E[ξ] = λ, V[ξ] = λ2 + λ− (λ)2 = λ.
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Moment Generating Function

Given a random variable X, or its distribution function F , we
define the moment generating function (m.g.f.) as

M(t) = E[etX ]

when this expected value exists.
I If the support of X are the non-negative integers,
MX(t) = φX(et).

I If X is bounded, M is defined for all t ∈ R.
I If X is not bounded, the domain of M might not be R. Int

this case, M is always defined in zero and M(0) = 1.
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If the function M is defined around t = 0, then the series

M(t) = E[etX ] = E
[
1 +

∞∑
n=1

]
tnXn

n! = 1 +
∞∑
n=1

tn

n!E[Xn]

converges and it can be differentiated. Hence,

M ′(0) = E[X], M ′′(0) = E[X2] in general M (n)(0) = E[Xn].
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Examples

1. If X ∼ Bin(n, p),

M(t) =
∞∑
j=0

ejt
(
n

j

)
pj(1− p)n−j = (pet + 1− p)n.

2. If X ∼ Exp(λ), that is, f(x) = λe−λx1 x∈[0,∞) for x ≥ 0,
then M(t) = λ/(λ− t) for t < λ.

M(t) =
∫ ∞

0
λe−λxetxdx = λ

e(t−λ)x

t− λ

∣∣∣∣∣
∞

0
= λ

λ− t
.

Note that M(t) is not defined if t ≥ λ.
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3. If X ∼ N (0, 1), then

M(t) = 1√
2π

∫ ∞
−∞

etxe−x
2/2dx

= 1√
2π

∫ ∞
−∞

e−
1
2 (x−t)2et2/2

dx

= et
2/2.

Since
et = 1 + t+ t2

2 + t3

3! + · · · ,

M(t) = et
2/2

= 1 + t2

2 + t4

222! + t6

233! + · · ·

= 1 + 0t+ 1
2 t

2 + 0t3 + 3
4! t

4 + 0t5 + · · ·

= M(0) +M ′(0)t+ M ′′(0)
2 t2 + M (3)(0)

3! t3 + M (4)(0)
4! t4 + · · · .
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Thus,
E[Xk] = M (k)(0) = 0, if k is odd.

Moreover

E[X] = M ′(0) = 0 Expected Value,
E[X2] = M ′′(0) = 1 = V[X] Variance,
E[X3] = M (3)(0) = 0 = µ̃3 Skewness,
E[X4] = M (4)(0) = 3 = κ Kurtosis.
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De Moivre - Laplace Central Limit

If Sn ∼ Bin(np) for n ≥ 1. Define q = 1− p and

Tn = Sn − np√
npq

.

Then for all x ∈ R,

P(Tn ≤ x)→ Φ(x)

Proof
Remember that Sn can be expressed as the sum of n
independent and identically distributed (i.i.d.) random
variables (r.v.) with Bernoulli distribution of parameter p:
Sn =

∑n
i=1Xi. Then, the moment generating function of Tn is
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E
[
etTn

]
= E

[
exp

{
t(Sn − np)
(npq)1/2

}]
= E

[
exp

{
t(
∑n
i=1(Xi − p))
(npq)1/2

}]

= E
[
n∏
i=1

exp
{
t(Xi − p)
(npq)1/2

}]
ind.=

n∏
i=1

E
[
exp

{
t(Xi − p)
(npq)1/2

}]

=
(
E
[
exp

{
t(X1 − p)
(npq)1/2

}])n
(Xi are identically distributed)

=
(
p exp

{
t(1− p)
(npq)1/2

}
+ (1− p) exp

{ −tp
(npq)1/2

})n
.
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We write the Taylor’s polynomial of the two exponential
functions, given by

p exp
{
t(1− p)
(npq)1/2

}
= p

(
1 + qt

(npq)1/2 + q2t2

2npq + C1q
3t3

3!(npq)3/2

)

(1−p) exp
{ −tp

(npq)1/2

}
= q

(
1− pt

(npq)1/2 + p2t2

2npq −
C2p

3t3

3!(npq)3/2

)
The sum of the two expressions are

1 + t2

2n +O(n−3/2),

hence

E
[
etTn

]
=
(

1 + t2

2n +O(n−3/2)
)n
→ et

2/2

which is the m.g.f. of a standard normal.
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