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Introduction

We considered discrete random variable–that is, random
variables whose set of possible values is either finite or
countably infinite. However, there also exist random variables
whose set of possible values is uncountable. Two examples are
the time that a train arrives at a specified stop and the lifetime
of a transistor. Let X be such a random variable.

In general, we say that a random variable X is continuous if its
distribution function is continuous. Since
P(X = x) = F (x)− F (x−), being F continuous. Then X is
continuous if P(X = x) = 0 for all x ∈ R.
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Example
Consider the experiment of choosing a random point in a disc D
of radius R with center in the origin. We interpret the
expression “at random” as “if A and B are subsets of the disc
with equal area and ω is a point chosen at random then
P(ω ∈ A) = P(ω ∈ B)”. We conclude that, the probability of a
point chosen in a subset A of the disc is proportional to the
area of A:

P(ω ∈ A) = C|A|,

where C is a constant and |A| is the area of A. Because

P(ω ∈ C) = 1 = C|D|

we have that

C = 1
|D|

and P(ω ∈ A) = |A|
|D|
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In particular, consider the case where A is a disc, and define
over the space D the variable X as the distance from the chosen
point to the origin. If 0 ≤ x ≤ R, the event

{ω, s.t. X(ω) ≤ x}

is the disc center in the origin of radius x. Its area is πx2.
Hence,

F (x) = P(X ≤ x) = πx2

πR2 = x2

R2 , 0 ≤ x ≤ R.

Moreover, if x < 0 then P(X ≤ x) = 0 and if x > R then
P(X ≤ x) = 1.
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Thus,

F (x) =


0 if x < 0,
x2

R2 if 0 ≤ x ≤ R,
1 if x > R,

which is a continuous function, so X is a continuous random
variable. The graph of F is

x

F (x)

R

1

0
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Density Function
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Density Function

Let X be a random variable with distribution function F . We
say that F has density (or is absolutely continuous), if exists a
non-negative function f such that

F (x) =
∫ x

−∞
f(t)dt for all x ∈ R.

The function f is called the density of the distribution function
or of the distribution or of the random variable.
Because limx→∞ F (x) = 1, we have that

∫∞
−∞ f(t)dt = 1.
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We also have that

P(a < X ≤ b) = P(X ≤ b)−P(X ≤ a) = F (b)−F (a) =
∫ b

a
f(t)dt.

Thus, the probability that the random variable X belongs to
the interval (a, b] is the area between the graph of the function
f , the x-axis and the verticals a and b.

t

f(t)

a b0

P(a < X ≤ b)

In general, if B is any set of real numbers,

P(X ∈ B) =
∫
B
f(t)dt. 9
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Remember that we defined the density function f of the
random variable X with distribution function F , as the
non-negative function such that

F (x) =
∫ x

−∞
f(t)dt.

Differentiating both sides of the equation yields

d

dx
F (x) = f(x),

that is, the density is the derivative of the cumulative
distribution function.
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A some-what more intuitive interpretation of the density
function may be obtained from as follows:

P
[
a− ε

2 < X ≤ a+ ε

2

]
=
∫ a+ ε

2

a− ε
2

f(t)dt ≈ εf(a)

if ε is small and f is continuous at a.

In other words, the probability that X will be contained in an
interval of length ε around the point a is approximately εf(a).
From this result we see that f(a) is a measure of how likely it is
that the random variable will be near a.
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Examples
1. Suppose that X is a continuous random variable whose

probability density function is given by

f(x) =
{
C(4x− 2x2) for 0 < x < 2,
0 otherwise.

(a) What is the value of C?
(b) Find P(X > 1).

(a). Since f is a probability density function, we must have

C

∫ 2

0
(4x− 2x2)dx = 1

⇔ C

[
2x2 − 2x3

3

]x=2

x=0
= 1

⇔ C = 3
8
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(b).

P(X > 1) =
∫ ∞

1
f(x)dx = 3

8

∫ 2

1
(4x− 2x2) = 1

2

x

f(x)

0 1 2
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2. The amount of time in hours that a computer functions
before breaking down is a continuous random variable with
probability density function given by

f(x) =
{
λe−x|100 for x ≥ 0,
0 otherwise.

What is the probability that
(a) a computer will function between 50 and 150 hours before

breaking down?
(b) it will function for fewer than 100 hours?

14
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(a). Since

1 =
∫ ∞

0
λe−x/100dx = λ

∫ ∞
0

e−x/100dx

we obtain

1 = −λ(100)ex/λ|∞0 = 100λ⇔ λ = 1
100 .

Hence, the probability that a computer will function between 50
and 150 hours before breaking down is given by

P(50 < X < 150) =
∫ 150

50

1
100e

−x/100dx = −e−x/100|150
50

= e−1/2 − e−3/2 ≈ 0.384

(b). Similarly,

P(X < 100) =
∫ 100

0

1
100e

−x/100dx = −e−x/100|100
0 = 1−e−1 ≈ 0.633
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3. The lifetime in hours of a certain kind of radio tube is a
random variable having a probability density function
given by

f(x) =
{

0 x ≤ 100,
100
x2 x > 100.

What is the probability that exactly 2 of 5 such tubes in a
radio set will have to be replaced within the first 150 hours
of operation? Assume that the events Ei, i = 1, 2, 3, 4, 5,
that the ith such tube will have to be replaced within this
time are independent.
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From the statement of the problem, we have

P(Ei) =
∫ 150

0
f(x)dx = 100

∫ 150

100

1
x2dx = 1

3 .

Hence, from the independence of the events Ei , it follows that
the desired probability is(

5
2

)(1
3

)2 (2
3

)3
= 80

243 .
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Uniform, Normal, Exponential and Laplace
Distributions
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Uniform Distribution
A random variable X has uniform distribution in the interval
[a, b] if for any interval I contained in [a, b], P(X ∈ I) is
proportional to the length of I. This is denoted as X ∼ U [a, b].
We can calculate the distribution function of X,

F (x) = P(X ∈ [a, x]) = K(x− a)

where K is the constant of proportionality. Because
F (b) = P(X ∈ [a, b]) = 1 we have

K(b− a) = 1⇔ K = 1
b− a

.

Therefore, the distribution function of X is

F (x) = x− a
b− a

1 a≤x≤b + 11 x>b

19
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The density of this function is

f(x) = 1
b− a

1 a≤x≤b

since we can verify that F (x) =
∫ x
−∞ f(t)dt for all x ∈ R.

x

f(x)

a b

1
b−a

x

F (x)

a b

1
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Example

Between 7 a.m. and 8 a.m. the trains departure from a certain
station every 10 minutes beginning at 7:03. Find the
probability that a person that arrives to the station has to wait
less than 2 minutes for the train if the arrival of the person
follows a uniform distribution in the interval:
(a) from 7 a.m. to 8 a.m.
(b) from 7:15 a.m. to 7:30 a.m.
Note that to wait less than 2 minutes, a person must arrive to
the station in an interval of the form (t− 2, t) where t is one of
the moments where the train departures.

21



Introduction Density Continuous R.V. 1 Lifetime Continuous R.V. 2 Mixed R.V.

(a). In the first case, the intervals of interest are

(7 : 01, 7 : 03), (7 : 11, 7 : 13), (7 : 21, 7 : 23),

(7 : 31, 7 : 33), (7 : 41, 7 : 43), (7 : 51, 7 : 53).

Let B be the union of this intervals. We know that the
distribution of the arrival is uniform in [7 : 00, 8 : 00] and we
want to find the probability of {X ∈ B}. Because the total
length of B is 12 minutes we have

P(X ∈ B) = length of B
60 = 12

60 = 1
5 .

(b). In the second case, we have that B = (7.21, : 23) so

P(X ∈ B) = 2
15 .
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Normal Distribution
A random variable Y is said to have or follow a normal
distribution with parameters µ and σ2 (whose meaning we are
going to see later), if its density function is given by

f(y) = 1√
2πσ

exp
{
−(y − µ)2

2σ2

}
1 y∈R.

Since this is a non-negative function, to see that it is effectively
a density of probability we have to prove that∫ ∞

−∞
f(y)dy = 1,

considering the change of variable z = (y − µ)/2σ we have∫ ∞
−∞

f(y)dy =
∫ ∞
−∞

1√
2πσ

e−z
2
σ
√

2dz

= 1√
π

∫ ∞
−∞

e−z
2
dz

23
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One way to calculate this last integral is as follows.

Let Cr be the disc with center in the origin and radius r and C ′r
the disc with the same center and radius

√
2r. Let Dr be the

square with center in the origin and side 2r.

r √
2r

2r

Cr

C ′r

Dr

24
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Given that the common integrand of the following integrals is
non-negative, we have∫ ∫

Cr

e−(x2+y2)dxdy ≤
∫ ∫

Dr

e−(x2+y2)dxdy ≤
∫ ∫

C′
r

e−(x2+y2)dxdy,

also∫ ∫
Dr

e−(x2+y2)dxdy =
∫ r

−r
e−x

2
dx

∫ r

−r
e−y

2
dy =

(∫ r

−r
e−x

2
dx

)2
.

Consider now the first integral of the inequalities. Changing to
polar coordinates ρ, θ through the transformation x = ρ cos θ
and y = ρ cos θ, we have
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De forma análoga, cambiando r por 2r resulta

∫ ∫
Cr

e−(x2+y2)dxdy =
∫ 2π

0
dθ

∫ r

0
e−ρ

2
ρdρ

= 2π
[
−1

2e
−ρ2
]r

0

= 2π
[1

2
(
1− e−r2)]

= π
(
1− e−r2)

.
26
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Analogously, changing r by
√

2r, we have∫ ∫
C′

r

e−(x2+y2)dxdy = π
(
1− e−2r2)

.

Replacing these quantities in the previous inequalities,

π
(
1− e−r2) ≤ (∫ r

−r
e−x

2
dx

)2
≤ π

(
1− e−2r2)

,

letting r →∞

π ≤
(∫ ∞
−∞

e−x
2
dx

)2
≤ π,

thus ∫ ∞
−∞

e−x
2
dx =

√
π.

Finally, we have∫ ∞
−∞

f(y)dy = 1√
π

∫ ∞
−∞

e−z
2
dz = 1.
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If Y has a normal distribution with parameters µ and σ2,
denoted as Y ∼ N (µ, σ2). If X ∼ N (0, 1) it is said that X has a
standard normal distribution, whose density is usually denoted
as φ, so

φ(x) = 1√
2π

exp
{
−x

2

2

}
1 x∈R.

The distribution function corresponding to the density φ is
usually denoted as Φ. This function does not have an explicit
formula and must be calculated numerically.

x

f(x)

σ = 0.5

σ = 1
σ = 2

-3 -2 -1 0 1 2 3 28
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Because φ is symmetric with respect to the origin, we have that

Φ(−x) =
∫ −x
−∞

φ(x)dx =
∫ ∞
x

φ(x)dx

=
∫ ∞
−∞

φ(x)dx−
∫ x

−∞
φ(x)dx

= 1− Φ(x),

so, for any value of x we have that Φ(−x) = 1− Φ(x), this
formula allows us to find the value of Φ(−x) from the value of
Φ(x). Hence, it is enough to know the values of Φ(x) for x ≥ 0.
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Let X ∼ N (0, 1) and consider Y = µ+ σX with σ > 0. Let FY
denote the distribution function of Y , then

FY (x) = P(Y ≤ x) = P(µ+ σX ≤ x)

= P
(
X ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
.

By differentiation, the density function of Y is then

fY (x) = 1
σ
φ

(
x− µ
σ

)
= 1√

2πσ
exp

{
−(x− µ)2

2σ2

}
1 x∈R.

which shows that Y ∼ N (µ, σ)
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Examples
1. If X is a normal random variable with parameters µ = 3

and σ2 = 9, find (a) P(2 < X < 5), (b) P(X > 0) and (c)
P(|X − 3| > 6).

(a).

P(2 < X < 5) = P
(2− 3

3 <
X − 3

3 <
5− 3

3

)
= P

(
−1

3 < Z <
2
3

)
= Φ

(2
3

)
− Φ

(
−1

3

)
= Φ

(2
3

)
−
[
1− Φ

(1
3

)]
≈ 0.378
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(b).

P(X > 0) = P
(
X − 3

3 >
0− 3

3

)
= P(Z > −1)
= 1− Φ(−1)
= Φ(1) ≈ 0.841

(c).

P(|X − 3| > 6) = P(X > 9) + P(X < −3)

= P
(
X − 3

3 >
9− 3

3

)
+ P

(
X − 3

3 <
−3− 3

3

)
= P(Z > 2) + P(Z < −2)
= 1− Φ(2) + Φ(−2)
= 2[1− Φ(2)] ≈ 0.046
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Normal Approximation to Binomial Distribution
De Moivre - Laplace Limit Theorem
If Sn ∼ Bin(np) for n ≥ 1. Define q = 1− p and

Tn = Sn − np√
npq

.

Then for all x ∈ R,

P(Tn ≤ x)→ Φ(x)

This result was proved originally for the special case of p = 12
by A. de Moivre in 1733 and was then extended to general p by
P. S. Laplace in 1812. It represents the first version of the
central limit theorem presented by P. S. Laplace and proved
rigorously by A. M. Lyapunov in the period 1901–1902.
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Examples

1. Let X be the number of times that a fair coin that is
flipped 40 times lands on heads. Find the probability that
X = 20. Use the normal approximation and compare it
with the exact solution.

To employ the normal approximation, note that because
the binomial is a discrete integer-valued random variable,
whereas the normal is a continuous random variable, it is
best to write P(X = i) as P(i− 1/2 < X < i+ 1/2) before
applying the normal approximation (this is called the
continuity correction).
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Therefore

P(X = 20) = P(19.5 < X < 20.5)

= P
(19.5− 20√

10
<
X − 20√

10
<

20.5− 20√
10

)
≈ P(−0.158 < Z < 0.158)
≈ Φ(0.158)− Φ(−0.158) ≈ 0.1255.

The exact result is

P(X = 20) =
(

40
20

)(1
2

)4
0 ≈ 0.1254.
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2. To determine the effectiveness of a certain diet in reducing
the amount of cholesterol in the bloodstream, 100 people
are put on the diet. After they have been on the diet for a
sufficient length of time, their cholesterol count will be
taken. The nutritionist running this experiment has
decided to endorse the diet if at least 65 percent of the
people have a lower cholesterol count after going on the
diet. What is the probability that the nutritionist endorses
the new diet if, in fact, it has no effect on the cholesterol
level?
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Let us assume that if the diet has no effect on the cholesterol
count, then, strictly by chance, each person’s count will be
lower than it was before the diet with probability 1/2 . Hence,
if X is the number of people whose count is lowered, then the
probability that the nutritionist will endorse the diet when it
actually has no effect on the cholesterol count is

1∑
i=65

00
(

100
i

)(1
2

)100
= P(X ≥ 65)

= P
(
X − 50√

25
≥ 65− 50√

25

)
≈ P(Z ≥ 3)
1− Φ(3) ≈ 0.0014
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3. Fifty-two percent of the residents of New York City are in
favor of outlawing cigarette smoking in publicly owned
areas. Approximate the probability that more than 50
percent of a random sample of n people from New York are
in favor of this prohibition when (a) n = 11, (b) n = 101,
(c) n = 1001. How large would n have to be to make this
probability exceed 0.95?
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Let N denote the number of residents of New York City. To
answer the preceding question, we must first understand that a
random sample of size n is a sample such that the n people
were chosen in such a manner that each of the

(N
n

)
subsets of n

people had the same chance of being the chosen subset.
Consequently, Sn , the number of people in the sample who are
in favor of the smoking prohibition, is a hypergeometric random
variable.
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But because N and 0.52N are both large in comparison with
the sample size n, it follows from the binomial approximation to
the hypergeometric that the distribution of Sn is closely
approximated by a binomial distribution with parameters n and
p = 0.52. The normal approximation to the binomial
distribution then shows that

P(Sn > 0.5n) = P
(

Sn − 0.52n√
n(0.52)(0.48)

>
0.5n− 0.52n√
n(0.52)(0.48)

)
= P(Z > −0.04

√
n)

≈ Φ(0.04
√
n).

Thus,

P(Sn > 0.5n) ≈


Φ(0.1327) ≈ 0.5528 if n = 11,
Φ(0.4020) ≈ 0.6562 if n = 101,
Φ(1.2655) ≈ 0.8972 if n = 1001.
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In order for this probability to be at least 0.95, we would need
Φ(0.04

√
n) > 0.95. Because Φ(x) is an increasing function and

Φ((1.645)) = 0.95, this means that

0.04n > 1.645⇔ n > 1691.266.

That is, the sample size would have to be at least 1692.
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Exponential Distribution
We say that a random variable X has exponential distribution if

P(X > x) = e−λx (x ≥ 0)

where λ > 0. Thus, its distribution function is

F (x) = P(X ≤ x) = 1− P(X > x) =
{

0 if x < 0,
1− e−λx if x ≥ 0.

and the density function of this distribution is

f(x) =
{

0 if x < 0
λe−λx if x ≥ 0.

We use the notation X ∼ Exp(λ).
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An important property of the exponential distribution is that
for a and b non-negative

P(X > a+ b) = P(X > a)P(X > b).

We can verify this property from the definition of the
distribution. An equivalent way to write this property is

P(X > a+ b|X > a) = P(X > b), a ≥ 0, b ≥ b,

which is known as the “memoryless” property of the
exponential function or the property of a lifetime product that
never gets old.
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Examples

1. if we assume that the decay rate of a mass m of a
radioactive material is proportional to the quantity of the
material at time t, then m satisfies the equation

dm

dt
= −λm

where λ is a constant that depends on the material. The
solution to this equation is

m = m0e
−λt,

where m0 is the quantity of the material at time t = 0.
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The proportion of material that has decay in t units of time is
given by (m0 −m)/m0, which can be interpreted as the
probability that an atom selected at random from the original
material decays in a period of time t. If X represents the
lifetime of this atom, then

F (x) = P(X ≤ t) = m0 −m
m0

= 1− e−λt,

so X ∼ Exp(λ).
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Laplace Distribution

A random variable X that can take either positive or negative
and whose absolute value is exponentially distributed with
parameter λ, λ > 0 is said to have a Laplace distribution, its
density and distribution function are given by

f(x) = 1
2e
−λ|x|

1 x∈R

and
F (x) = 1

2e
−λx

1 x<0 +
[
1− 1

2e
−λx

]
1 x≥0,

respectively.
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Survivor Function
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Introduction

In the lifetime analysis we consider situations in which the time
to the occurrence of some event is of interest for individuals in
some population. Sometimes the events are actual deaths of
individuals and “lifetime” is the length of life measured from
some particular starting point. In other instances “lifetime” and
the words “death” or “failure,” which denote the event of
interest, are used in a figurative sense.
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Survivor Function for Continuous Models

Let T be a non-negative continuous random variable
representing the lifetime of individuals in some population. Let
f(t)denote the probability density function of T The probability
of an individual surviving to time t is given by the survivor
function

S(t) = P(T ≥ t) =
∫ ∞
t

f(x)dx.

In some contexts, S(t) is referred to as the reliability function.
I S(t) is a monotone decreasing function continuous.
I S(0) = 1 and limt→∞ S(t) = 0.
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Hazard Function for Continuous Models

The hazard function h(t) is defined as

h(t) = lim
∆t→0

P(t ≤ T < t+ ∆t|T ≥ t)
∆t

= f(t)
S(t) .

The hazard function specifies the instantaneous rate of death or
failure at time t, given that the individual survives up to t;
h(t)∆t is the approximate probability of death in [t, t+ ∆t)
given survival up to t. The hazard function is sometimes called
hazard rate or force of mortality.
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Relation between Functions

I f(t) = − d
dtS(t).

I h(t) = − d
dt logS(t).

I S(t) = exp
{
−
∫ t
0 h(x)dx

}
.

We define the cumulative hazard function

H(t) =
∫ t

0
h(x)dx.

I S(t) = exp[−H(t)].
I limt→∞H(t) =∞.
I f(t) = h(t)S(t) = h(t) exp

{
−
∫ t
0 h(x)dx

}
.
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Survivor Function for Discrete Models

Sometimes, for example, when lifetime are grouped or measured
as a number of cycles or some sort, T may be treated as a
discrete random variable. Suppose T can take the values
t1, t2, . . . with 0 ≤ t1 < t2 < · · · , and let the probability function
be

f(tj) = P(T = tj), j = 1, 2, . . . .

The survivor function is then

S(t) = P(T ≥ t) =
∑
j:tj≥t

f(tj).

When considered as a function for all t ≥ 0, S(t) is a
left-continuous, non.increasing step function with S(0) = 1 and
limt→∞ S(t) = 0.
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Hazard Function for Discrete Models
The discrete hazard function is defined as

h(tj) = P(T = tj |T ≥ tj)

= f(tj)
S(tj)

, j = 1, 2, . . .

Since f(tj) = S(tj)− S(tj+1),

h(tj) = 1− S(tj+1)
S(tj)

, j = 1, 2, . . .

and
S(t) =

∏
j:tj<t

[1− h(tj)].

The analog of the continuous H(t) is defined as

H(t) =
∑
j:tj<t

h(tj).

53



Introduction Density Continuous R.V. 1 Lifetime Continuous R.V. 2 Mixed R.V.

Example

One often hears that the death rate of a person who smokes is,
at each age, twice that of a nonsmoker. What does this mean?
Does it mean that a nonsmoker has twice the probability of
surviving a given number of years as does a smoker of the same
age?

If h(t) denotes the hazard rate of a smoker of age t and hs(t)
that of a nonsmoker of age t, then the statement at issue is
equivalent to the statement that hs(t) = 2hn(t). The
probability that an A-year-old nonsmoker will survive until age
B, A < B, is
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P(A-year-old nonsmoker reaches age B)
= P(nonsmoker’s lifetime > B|nonsmoker’s lifetime > A)

= Snon(B)
Snon(A)

=
exp

{
−
∫ B

0 hn(t)dt
}

exp
{
−
∫ A

0 hn(t)dt
}

= exp
{
−
∫ B

A
hn(t)dt

}
,

whereas the corresponding probability for a smoker is, by the
same reasoning,
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P(A-year-old smoker reaches age B)

= exp
{
−
∫ B

A
hs(t)dt

}

= exp
{
−2
∫ B

A
hn(t)dt

}

=
[
exp

{
−
∫ B

A
hn(t)dt

}]2

.

In other words, for two people of the same age, one of whom is
a smoker and the other a nonsmoker, the probability that the
smoker survives to any given age is the square (not one-half) of
the corresponding probability for a nonsmoker. For instance, if
hn(t) = 1/30, 50 ≤ t ≤ 60, then the probability that a
50-year-old nonsmoker reaches age 60 is e−1/3 ≈ 0.7165, whereas
the corresponding probability for a smoker is e−2/3 ≈ 0.5134.
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Exponential, Rayleigh, Gamma, Erlang, χ2,
Weibull, Log-normal, Cauchy and Beta

Distributions
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Exponential and Rayleigh Distributions
The exponential distribution is characterized by a constant
hazard function

h(t) = λ, t ≥ 0,
where λ > 0. The survivor function is

S(t) = e−λt.

If a random variable has a linear hazard rate function–that is, if
h(t) = a+ bt, t ≥ 0

then its survivor and distribution functions are given by
S(t) = e−at−bt

2/2, F (t) = 1− e−at−bt2/2

and differentiation yields its density, namely,
f(t) = (a+ bt)e−at−bt2/21 t≥0.

When a = 0, the preceding equation is known as the Rayleigh
density function.
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Gamma Distribution

A random variable is said to have a gamma distribution with
parameters α, β, α > 0, β > 0, if its density function is given by

f(t) = βα

Γ(α)tα−1 e
−βt

1 t≥0,

where Γ(α), called the gamma function, is defined as

Γ(α) =
∫ α

0
e−yyα−1dy,

β is called the rate parameter and α the shape parameter. It is
often to see the density parametrized in terms of α and θ = 1/β,
θ is called the scale parameter of the distribution. This
distribution includes the exponential as a special case (α = 1).
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Erlang Distribution

The gamma distribution arises in some situations involving the
exponential distribution, because of the well-known result that
sums of independent and identically distributed (i.i.d.)
exponential random variables have a gamma distribution.
Specifically, if T1, . . . , Tn, are independent, each with
exponential distribution λ, then T1 + · · ·+ Tn has a gamma
distribution with parameters α = n and β = λ. This
distribution is often referred to in the literature as the n-Erlang
distribution.
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χ2 Distribution

The gamma distribution with α = n/2 and β = 1/2, n a
positive integer, is called the χ2 distribution with n degrees of
freedom. The chi-squared distribution often arises in practice as
the distribution of the error involved in attempting to hit a
target in n-dimensional space when each coordinate error is
normally distributed.
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Weibull Dsitribution
The Weibull distribution is perhaps the most widely used
lifetime distribution model. Application to the lifetimes or
durability of manufactured items is common, and it is used as a
model with diverse types of items, such as ball bearings,
automobile components, and electrical insulation. It is also used
in biological and medical applications, for example, in studies
on the time to the occurrence of tumors in human populations
or in laboratory animals.
The Weibull distribution has a hazard function of the form

h(t) = λβ(λt)β−1,

where λ > 0 is called the rate parameter (θ = 1/λ is called the
scale parameter) and β > 0 is called the shape parameter. It
includes the exponential distribution as the special case where
β = 1.
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The distribution, survivor and density functions are given by

F (t) = 1− exp
{
−(λt)β

}
, S(t) = exp

{
−(λt)β

}
and

f(t) = λβ(λt)β−1 exp
{
−(λt)β

}
1 t≥0.

The Weibull hazard function is monotone increasing if β > 1,
decreasing if β < 1, and constant for β = 1. The model is fairly
flexible and has been found to provide a good description of
many types of lifetime data.
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Log-normal Distribution

The log-normal distribution has been used as a model in diverse
applications in engineering, medicine, and other areas. A
random variable T is said to be log-normally distributed if
X = log T is normally distributed, say with mean µ, variance
σ2.
The density, distribution and survivor functions are given by

f(t) = 1√
2πσt

exp
{
−1

2

( log t− µ
σ

)2
}
1 t>0

F (t) = Φ
( log t− µ

σ

)
, S(t) = 1− Φ

( log t− µ
σ

)
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The hazard function can be shown to have the value 0 at t = 0,
increase to a maximum, and then decrease, approaching 0 as
t→∞. This shape arises in many situations, for example, when
a population consists of a mixture of individuals who tend to
have short and long lifetimes, respectively. Examples include
survival after treatment for some forms of cancer, where persons
who are cured become long-term survivors, and the duration of
marriages, where after a certain number of years the risk of
marriage dissolution due to divorce tends to decrease.
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Cauchy Distribution

A random variable is said to have a Cauchy distribution with
parameters µ ∈ R and σ > 0, if its density is given by

f(x) = 1
πσ

1

1 +
(
x−µ
σ

)21 x∈R,

µ is called the location parameter and σ the scale parameter.
And its distribution function is given by

1
2 + 1

π
arctan

(
x− µ
σ

)
.
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Example

Suppose that a narrow-beam flashlight is spun around its
center, which is located a unit distance from the x-axis.
Consider the point X at which the beam intersects the x-axis
when the flashlight has stopped spinning. (If the beam is not
pointing toward the x-axis, repeat the experiment.)

x-axis
X

θ

1

0
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The point X is determined by the angle θ between the flashlight
and the y-axis, which, from the physical situation, appears to
be uniformly distributed between −π/2 and π/2. The
distribution function of X is thus given by

F (x) = P(X ≤ x)
= P(tan θ ≤ x)
= P(θ ≤ arctan x)

= arctan x+ π/2
π/2 + π/2

= 1
2 + arctan x

π

Hence, the density function of X is given by

f(x) = d

dx
F (x) = 1

π(1 + x2)

and we see that X has the Cauchy distribution.
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Beta Distribution
A random variable X is said to have a beta distribution if its
density is given by

f(x) = 1
B(a, b)x

a−1(1− x)b−1
1 x∈(0,1),

where
B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx = Γ(a)Γ(b)

Γ(a+ b)
and a, b > 0.
When a = b, the beta density is symmetric about 1/2 , giving
more and more weight to regions about 1/2 as the common
value a increases. When b > a, the density is skewed to the left
(in the sense that smaller values become more likely); and it is
skewed to the right when a > b.
The uniform distribution in (0, 1) is a special case of the beta
distribution where a = b = 1.
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Mixed Random Variables
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Mixed Random Variables

These are random variables that are neither discrete nor
continuous, but are a mixture of both. In particular, a mixed
random variable has a continuous part and a discrete part.

Examples
1. The distribution function of the random variable X is given

by

F (x) =



0 if x < 0,
x
2 if 0 ≤ x < 1,
2
3 if 1 ≤ x < 2,
11
12 if 2 ≤ x < 3,
1 if 3 ≤ x.
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A graph of F (x) is

x

F (x)

1/2
2/3

11/12
1

0 1 2 3

(a) P(X < 3) = limx↑3 F (x) = 11
12 .

(b) P(X = 1) = P(X ≤ 1)− P(X < 1) = F (1)− limx↑1 F (x) =
2
3 −

1
2 = 1

6 .
(c) P(X > 1/2) = 1− P(X ≤ 1/2) = 1− F (1/2) = 3

4 .
(d) P(2 < X ≤ 4) = F (4)− F (2) = 1

12 .
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2. Let X be a continuous random variable with the following
density: f(x) = 2x1 x∈[0,1]. Let also

Y = g(X) =
{
X if 0 ≤ X ≤ 1

2 ,
1
2 if X > 1

2 .

Find the distribution function of Y and calculate the
probabilities: (a) P(1

4 ≤ Y ≤
3
8), (b) P(Y ≥ 1

4).

First note that the support of X is [0, 1]For x ∈ [0, 1],
0 ≤ g(x) ≤ 1

2 . Thus, the support of Y is [0, 1
2 ], and

therefore
FY (y) = 0, for y < 0,
FY (y) = 1, for y > 1

2 .

Now note that

P(Y = 1
2) = P(X >

1
2)

=
∫ 1

1
2

2xdx = 3
4 .
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Also, for 0 < y < 1
2 ,

FY (y) = P(Y ≤ y)
= P(X ≤ y)

=
∫ y

0
2xdx

= y2.

Thus, the distribution function of Y is given by
FY (y) = y2

1 y∈(0, 1
2 ) + 1 y≥ 1

2
,

whose graph is

x

F (x)

1
4

1

1
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(a)

P
(1

4 ≤ Y ≤
3
8

)
= P

(1
4 < Y ≤ 3

8

)
+ P

(
Y = 1

4

)
= FY

(3
8

)
− FY

(1
4

)
+ P

(
Y = 1

4

)
=
(3

8

)2
−
(1

4

)2
+ 0 = 5

64 .

(b)

P
(
Y ≥ 1

4

)
= 1− FY

(1
4

)
+ P

(
Y = 1

4

)
= 1−

(1
4

)2
+ 0 = 15

16 .
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