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Introduction

Frequently, when we perform a random experiment we are
interested mainly in some function of the outcome as opposed
to the actual outcome itself. For instance, in throwing two dice,
we are often interested in the sum of the two dice and are not
really concerned about the separate values of each one. That is,
we may be interested in knowing that the sum is 7 and may not
be concerned over whether the actual outcome was (1, 6), (2, 5),
(3, 4), (4, 3), (5, 2), or (6, 1).

These quantities of interest, or, more formally, these real-valued
functions defined on the sample space, are known as random
variables.
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Examples of Random Variables

1. Suppose that our experiment consists of tossing 3 fair
coins. If we let Y denote the number of heads that appear,
then Y is a random variable taking on one of the values 0,
1, 2, and 3 with respective probabilities

P(Y = 0) = P((T, T, T )) = 1
8

P(Y = 1) = P((T, T,H), (T,H, T ), (H,T, T )) = 3
8

P(Y = 2) = P((T,H,H), (H,T,H), (H,H, T )) = 3
8

P(Y = 3) = P((H,H,H)) = 1
8
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Since Y must take on one of the values 0 through 3, we must
have

1 = P
( 3⋃
i=0

(Y = i)
)

=
3∑
i=1

P(Y = i)

which, of course, is in accord with the preceding probabilities.
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2. Three balls are to be randomly selected without
replacement from an urn containing 20 balls numbered 1
through 20. If we bet that at least one of the balls that are
drawn has a number as large as or larger than 17, what is
the probability that we win the bet?

Let X denote the largest number selected. Then X is a
random variable taking on one of the values 3, 4, · · · , 20.
Furthermore, if we suppose that each of the

(20
3
)

possible
selections are equally likely to occur, then

P(X = i) =
(i−1

2
)(20

3
) , i = 3, 4, . . . , 20

from which we see that
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P(X = 20) =
(19

2
)(20

3
) = 0.15

P(X = 19) =
(18

2
)(20

3
) ≈ 0.134

P(X = 18) =
(17

2
)(20

3
) ≈ 0.119

P(X = 17) =
(16

2
)(20

3
) ≈ 0.105

hence,

P(X ≥ 17) ≈ 0.15 + 0.134 + 0.119 + 0.105 = 0.508
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3. Independent trials consisting of the flipping of a coin
having probability p of coming up heads are continually
performed until either a head occurs or a total of n flips is
made. If we let X denote the number of times the coin is
flipped, then X is a random variable taking on one of the
values 1, 2, 3, · · · , n with respective probabilities

P(X = 1) = P{(H)} = p

P(X = 2) = P((T,H)) = (1− p)p
P(X = 3) = P((T, T,H)) = (1− p)2p

...
P (X = n− 1) = P ((T, T, · · · , T︸ ︷︷ ︸

n−2

, H)) = (1− p)n−2p

P (X = n) = P ((T, T, ..., T︸ ︷︷ ︸
n−1

, T ), (T, T, ..., T︸ ︷︷ ︸
n−1

, H)) = (1− p)n−1
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As a check, note that

P
(

n⋃
i=1

(X = i)
)

=
n∑
i=1

P(X = i)

=
n−1∑
i=1

(1− p)ip+ (1− p)n−1

= p

[
1− (1− p)n−1

1− (1− p)

]
+ (1− p)n−1

= 1− (1− p)n−1 + (1− p)n−1

= 1
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4. Three balls are randomly chosen from an urn containing 3
white, 3 red, and 5 black balls. Suppose that we win $1 for
each white ball selected and lose $1 for each red ball
selected. If we let X denote our total winnings from the
experiment, then X is a random variable taking on the
possible values 0, ±1, ±2, ±3 with respective probabilities

P(X = 0) =
(5

3
)

+
(3

1
)(3

1
)(5

1
)(11

3
) = 55

165

P(X = 1) = P(X = −1) =
(3

1
)(5

2
)

+
(3

2
)(3

1
)(11

3
) = 39

165

P(X = 2) = P(X = −2) =
(3

2
)(5

1
)(11

3
) = 15

165

P(X = 3) = P(X = −3) =
(3

3
)(11

3
) = 1

165
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Random Experiment Random Variable
Rolling two dice. X = sum of the two dice.

Tossing a coin 25 times. X = number of tails
in the 25 throws.

Apply certain quantity of X = production in tons
fertilizer in corn plants. per hectare.
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Definition of a Random Variable

We have associated a mathematical model to a random
experiment, represented by the space of probability (Ω,A,P),
where Ω is the set of possible results of the experiment, A is
collection of events and P : F → [0, 1] is a function that satisfies
the conditions of a probability measure.

A function X : Ω→ R is a (real-valued) random variable if it
satisfies that for any interval I ∈ R, the set {ω, s.t. X(ω) ∈ I}
is an event.
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Distribution of a Random Variable

Note that from the definition, we do not really need X to be
defined in a probability space, it is enough that it is defined in a
space Ω with σ-algebra A of subsets of Ω. If A is an arbitrary
subset of R and we want to find the probability that the
variable X takes values in A, we need to consider the set
{ω, s.t. X(ω) ∈ A} = X−1(A).
This relation defines a (measure of) probability induced by the
variable X as follows:

PX(A) = P(X ∈ A) = P({ω ∈ Ω, s.t. X(ω) ∈ A}) = P(X−1(A)).

This (measure of) probability is known as the distribution of X
and has all the probabilistic information about X.
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(Cumulative) Distribution Function and Properties

Let be (Ω,A,P) a probability space and X : Ω→ R a random
variable. We define the (cumulative) distribution function of
the random variable X, denoted by F the function

F (x) = P({ω, s.t. X(ω) ≤ x}) = P(X ≤ x)

1. F is non-decreasing.
2. limx→−∞ F (x) = 0, limx→+∞ F (x) = 1.
3. F is right continuous.
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1. If x1 < x2 then
F (x2)−F (x1) = P(X ≤ X2)−P(X ≤ x1) = P(x1 < X ≤ x2) ≥ 0.

2. Let {xn} be a decreasing succession of real numbers,
xn → −∞. Then the succession of events {ω, s.t. X(ω) ≤ xn}
is a decreasing succession and

∞⋂
n=1
{ω, s.t. X(ω) ≤ xn} = ∅.

Thus,

lim
n→∞

F (xn) = lim
n→∞

P({ω, s.t. X(ω) ≤ xn}) = P(∅) = 0.

This proves that limx→−∞ F (x) = 0.

15



Introduction Definitions Discrete Random Variables

Similarly, if {xn} is an increasing succession and xn →∞, the
succession of events {ω, s.t. X(ω) ≤ xn} is increasing
succession and

∞⋃
n=1
{ω, s.t. X(ω) ≤ xn} = Ω.

Thus

lim
n→∞

F (xn) = lim
n→∞

P({ω, s.t. X(ω) ≤ xn}) = P(Ω) = 1.

This proves that limx→+∞ F (x) = 1.
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3. To prove that F is right continuous for every point, it is
sufficient to prove that if {xn} is a decreasing succession that
tends to a, then

lim
n→∞

F (xn) = F (a).

To see this, note that

{X ≤ a} =
∞⋂
n=1
{X ≤ xn}

and since {X ≤ xn} is a decreasing succession of events, we
have that

lim
n→∞

F (xn) = lim
n→∞

P(X ≤ xn) = P(X ≤ a) = F (a).
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Probability Space Induced by a Distribution Function

Reciprocally, if a function F : R→ [0, 1] satisfies 1, 2 and 3 it
can be proved that F is a distribution function of a random
variable. Just consider Ω = R, A = B, where B is the family of
Borel sets and define the probability P as

P((a, b]) = F (b)− F (a).

18
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Denote by
F (a−) = lim

x↑a
F (x),

the left side limit of F in a. We have that P(X < x) = F (x−).
Hence, if X is a random variable with distribution function F
then,

P(X ∈ (a, b]) = F (b)− F (a),
P(X ∈ [a, b]) = F (b)− F (a−),
P(X ∈ (a, b)) = F (b−)− F (a),
P(X ∈ [a, b)) = F (b−)− F (a−)

Proof
P(X ∈ [a, b]) = P(X ≤ b)− P(X < a) = F (b)− F (a−). �

If we have now a = b = x, we have
P(X = x) = F (x)− F (x−)

thus, a distribution function is continuous if and only if
P(X = x) = 0 for all x ∈ R. 19
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Discrete Random Variable
A random variable that can take on at most a countable
number of possible values is said to be discrete. For a discrete
random variable X, we define the probability mass function
p(a) of X by

p(a) = P(X = a)
The probability (mass) function p(a) is positive for at most a
countable number of values of a. That is, if X must assume one
of the values x1, x2, . . ., then

p(xi) ≥ 0 for i = 1, 2, . . .
p(x) = 0 for all other values of x.

Furthermore,

F (x) = P(X ≤ x) =
∑
i:xi≤x

p(xi).
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Examples of Discrete R.V.

1. It is often instructive to present the probability (mass)
function in a graphical format by plotting p(xi) on the
y-axis against xi on the x-axis. For instance, if the
probability mass function of X is

p(0) = 1
4; p(1) = 1

2; p(2) = 1
4

we can represent this function graphically as

22



Introduction Definitions Discrete Random Variables

The graph of the distribution function of this random variable is

x

F (x)

0 1 2

1/4
2/4
3/4
4/4
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2. A graph of the probability function of the random variable
representing the sum when two dice are rolled looks like

x

p(x)

1 2 3 4 5 6 7 8 9 10 11 12

1/36
2/36
3/36
4/36
5/36
6/36
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The distribution function of this random variables is

x

F (x)

1 2 3 4 5 6 7 8 9 10 11 12
0

1
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3. A box has 6 cards numbered from 1 to 6. Two cards are
taken with replacement and the maximum of the numbers
is registered. How is the probability function of this
variable? How is, if the sampling is done without
replacement?

Consider first the case with replacement. The sampling
space for this experiment is the set or pairs (ω1, ω2) where
ωi ∈ {1, 2, 3, 4, 5, 6} for i = 1, 2. The random variable
X : Ω→ R of interest is defined by

X(ω1, ω2) = max{ω1, ω2}

which takes values in the set {1, 2, 3, 4, 5, 6}. If all the cards
have the same probability to be selected then all the
elementary events of the sample space are have the
probability 1/36.
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It is easy to calculate the probability function of the random
variable X:

xi: 1 2 3 4 5 6
p(xi): 1

36
3
36

5
36

7
36

9
36

11
36

whose graphical representation is

x

p(x)

1 2 3 4 5 6
1/36
3/36
5/36
7/36
9/36

11/36
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If the selection is done without replacement, then the sample
space is the set

{(ω1, ω2), s.t. ωi ∈ {1, 2, 3, 4, 5, 6}, ω1 6= ω2}.

The variable X(ω1, ω2) = max{ω1, ω2} now takes the values in
the set {2, 3, 4, 5, 6}. If the cards have the same probability to
been selected, the elementary events have the same probability
1/30. The next table shows the probability function of the
random variable X.

xi: 2 3 4 5 6
p(xi): 2

30
4
30

6
30

8
30

10
30

whose graphical representation is
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x

p(x)

1 2 3 4 5 6

2/30
4/30
6/30
8/30

10/30
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4. A coin is toss repetitively, consider the first time that we
observe “head.” Find the probability function of this
variable.

If H denotes “head” and T “tail”, each elementary event is
an infinite succession of these symbols:

ω = (H,H,H,H, T,H,H, T, T, T, . . .)

and the random variable of interest assign to each
elementary event the place corresponding to the first H.
For example

X(T, T, T,H,H, T,H, . . .) = 4.
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Observe that X can take the value of any positive integer and
by independence we can compute its probability function:

P(X = 1) = 1
2 , P(X = 2) = 1

2
1
2 =

(1
2

)2
,

in general X = n if and only if the first n− 1 tosses are T and
the n-th is H, which has probability

P(X = n) =
(1

2

)n
.

Because ∞∑
n=1

P(X = n) =
∞∑
n=1

(1
2

)n
= 1

the random variable X is discrete and takes values in the
numerable set {1, 2, . . .}.
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Bernoulli Distribution

This distribution correspond to a variable X that takes two
values, 1 and 0 with the probabilities p and q = 1− p,
respectively, that is

P(X = x) =
{
p if x = 1,
1− p if x = 0.

In this case we say that X has or follows a Bernoulli
distribution with parameter p and denote it as X ∼ Ber(p).
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Define the indicator function pf a subset A of a set B,
1Ax : B → {0, 1} as

1A(x) =
{

1 if x ∈ A,
0 if x /∈ A.

An equivalent notation for this function is 1 x∈A. With this
notation, the probability function of a Bernoulli random
variable can be written as

p(x) = p1 x=1 + (1− p)1 x=0.
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Binomial Distribution

Remember the example of sampling with replacement, in which
the variable of interest was the number of defective products X
in a sample of n products, that is

X =
n∑
i=1

ei,

where ei = 1 or 0 if the product is defective or not, respectively.
We have seen that the probability function of such random
variable X is

p(x) =
(
n

x

)
px(1− p)n−x1 x∈{0,1...,n}.
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We say in this case that X has or follows a binomial
distribution with parameters n, p and denote it as
X ∼ Binom(n, p). Note that, by the binomial theorem, the
probabilities sum to 1; that is,

n∑
x=0

(
n

x

)
px(1− p)n−x = [p+ (1− p)]n = 1.

Furthermore note that X can be seen as the sum of n
independent Bernoulli r.v. with parameter p.
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We can deduce a recursive relation between the terms of the
distribution.If X ∼ Binom(n, p) then

P(X = k + 1) =
(

n

k + 1

)
pk+1(1− p)n−k−1

= n!
(k + 1)!(n− k − 1)!

(
p

1− p

)
pk(1− p)n−k

= n− k
k + 1

(
p

1− p

)
n!

k!(n− k)!p
k(1− p)n−k

= n− k
k + 1

(
p

1− p

)
P(X = k)

We can use this relation starting with P(X = 0) = (1− p)n or
P(X = n) = pn to find the values of the distribution.
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Example

5 cards are selected with replacement from a deck of cards. If X
is the number of diamonds in the sample. What is the
probability that there are exactly two diamonds in the five
cards? What is the probability that there are at most 2
diamonds?

To answer the first question we want to calculate P(X = 2),
since the probability of getting a diamond in each extraction is
1/4 we have:

P(X = 2) =
(

5
2

)(1
4

)2 (3
4

)3
≈ 0.264
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For the second question, we have that

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(x = 2)

=
(

5
0

)(1
4

)0 (3
4

)5
+
(

5
1

)(1
4

)1 (3
4

)4
+
(

5
2

)(1
4

)2 (3
4

)3

≈ 0.237 + 0.399 + 0.264
= 0.9
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Uniform Distribution

A random variable X with values in the set {x1, x2, . . . , xn} has
a uniform distribution if all the points xi, 1 ≤ i ≤ n have the
same probability.Since there are n possible values this means
that

p(x) = 1
n
1 x∈{x1,x2,...,xn}.

In this case we say that X has or follows a uniform distribution
in {x1, . . . , xn} denoted as X ∼ U{x1, . . . , xn}.
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Poisson Distribution
We say that a random variable X has or follows a Poisson
distribution with parameter λ (λ > 0), denoted as X ∼ Pois(λ),
if its probability function is

p(x) = λx

x! e
−λ
1 x∈{0,1,...}.

This relation effectively defines a probability function, using
series of Taylor of the exponential function,

∞∑
x=0

p(x) = e−λ
∞∑
x=0

λx

x! = e−λeλ = 1.

This application has numerous of applications, also it is useful
as an approximation to the binomial distribution for n large
and p small.
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Poisson Approximation to the Binomial Distribution
Consider the binomial distribution when n increases and p
tends to zero so the product np = λ remains fixed. The
binomial distribution is

pn,k =
(
n

k

)
pk(1− p)n−k

= n(n− 1) · · · (n− k + 1)
k! pk(1− p)n−k

= n(n− 1) · · · (n− k + 1)
k!nk (np)k(1− p)n−k

= n(n− 1) · · · (n− k + 1)
nk

λk

k! (1− p)n−k

=
(

1− 1
n

)(
1− 2

n

)
· · ·
(

1− k − 1
n

)
λk

k! (1− p)n−k

=

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− k−1

n

)
(1− p)k

λk

k! (1− p)n
41
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On the other hand, note that

(1− p)n = [(1− p)−1/p]−np = [(1− p)−1/p]−λ,

from the definition of e we know that

lim
z→0

(1 + z)1/z = e.

So
lim
p→0

[(1− p)−1/p]−λ = e−λ.

Moreover

lim
n→∞

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− k−1

n

)
= 1

because we assumed that p→ 0 when n→∞ and np = λ is
constant. Then we have

lim
n→∞

pn,k = e−λλk

k! .
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Examples
1. The number of calls per minute received by a call center

follows a Poisson distribution with parameter λ = 4. If the
center can manages at most 6 calls per minute, what is the
probability that the center is insufficient for the calls
received in one minute?

Let be X the number of calls received in one minute.
Compute first

P(X ≤ 6) =
6∑

x=0
e−4 4x

x
≈ 0.889,

hence

P(X > 6) = 1− P(X ≤ 6) ≈ 1− 0.889 = 0.111
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400 fuses are sampled from a process that, on average, produces
1% of defectives. What is the probability that at most there are
5 defective fuses in the sample?

Let be X the number of defective fuses in the sample. We know
that X follows a binomial distribution with n = 400 and
p = 0.01 and we want to compute

P(X ≤ 5) =
5∑

x=0

(
400
x

)
px(1− p)400−x,

to avoid the computation of this sum we can use the Poisson
distribution with parameter λ = np = 400× 0.01 = 4, to
approximate the binomial distribution.

P(X ≤ 5) ≈
5∑

x=0
e−4 4x

x! = e−4
(

1 + 4 + 42

2 + 43

6 + 44

24 + 45

120

)
≈ 0.785
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For the Poisson distribution there is also a recursive relation
that allows the computation of the values.

If X ∼ Pois(λ), then

P(X = i+ 1)
P(X = i) = e−λλi+1i!

e−λλi(i+ 1)! = λ

i+ 1 ,

that is
P(X = i+ 1) = λ

i+ 1P(X = i), i ≥ 0.
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Hypergeometric Distribution

Assume that in a population of n elements, r are of type I and
n− r are of type II. We extract a sample of k elements from
this population without replacement, where every element has
the same probability of being selected, called X the random
variable that represents the number of elements of type I in the
sample. We want to find the probability function of X, that is

P(X = j),

where j is any number between the maximum of zero and
n− (k − r) and the minimum of k and r.
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To find the probability note that in the sample there are x
elements of type I and n− x of type II. Those of type I can be
selected in

(r
x

)
different ways and those of type II in

(n−r
k−x

)
different ways. Since every selection of the x elements of type I
can be combined with any selection of the n− x elements of
type II, we have that

P(X = x) =
(r
x

)(n−r
k−x

)(n
k

) 1 x∈{max{0,k−(n−r)},...,min{k,r}}.

In this case we say that X has or follows a hypergeometric
distribution with parameters n, r, k, denoted as
X ∼ HyperGeometric(n,r,k).
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Binomial Approximation to the Hypergeometric
Distribution

If k individuals are randomly chosen without replacement from
a population of n individuals of which the fraction p = r/n is of
type I, then the number of individuals of type I selected is
hypergeometric. Now, it would seem that when r and n are
large in relation to k, it shouldn’t make much difference
whether the selection is being done with or without
replacement, because, no matter which individuals have
previously been selected, when r and n are large, each
additional selection will be of type I with a probability
approximately equal to p. In other words, it seems intuitive
that when r and n are large in relation to k, the probability
mass function of X should approximately be that of a binomial
random variable with parameters k and p.
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To verify this intuition, note that if X is hypergeometric, then,
for i ≤ k,

P(X = x) =
(r
x

)(n−r
k−x

)(n
k

)
= r!

(r − x)!x!
(n− r)!

(n− r − k + x)!(k − x)!
(n− k)!k!

n!

=
(
k

x

)
r

n

(r − 1)
(n− 1) · · ·

(r − x+ 1)
(n− x+ 1)

(n− r)
(n− x)

(n− r − 1)
(n− x− 1)

· · · (n− r − (k − x− 1))
(n− x− (k − x− 1))

((((
((((

(
(n− r − (k − x))!
((((

(((((n− r − k + x)!
���

�(n− k)!

((((
((((

(
(n− x− (k − x))!

≈
(
k

x

)
px(1− p)k−x

when p = r/n and r and n are large in relation to k and x.
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Examples

1. Consider a population of 100 people, 10 of which have
myopia. The probability that there are at most two people
with myopia in a group of 10 chosen at random without
replacement is:

P(X ≤ 2) =
2∑

x=0

(10
2
)(90

8
)(100

10
) ≈ 0.94
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Since all the individuals in the population have the same
probability of been selected, then an important property of the
hypergeometric distribution is that it assumes that the
proportion of individuals of type I in the selected sample x/k
must be approximately equal to the proportion of individuals of
type I in the population r/n, that is

r

n
≈ x

k
.

To obtain some information about the size of the population,
ecologists often perform the following experiment: They first
catch a number, say, r, of these animals, mark them in some
manner, and release them. After allowing the marked animals
time to disperse throughout the region, a new catch of size, say,
k, is made.
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Let X denote the number of marked animals in this second
capture. If we assume that the population of animals in the
region remained fixed between the time of the two catches and
that each time an animal was caught it was equally likely to be
any of the remaining uncaught animals, it follows that X is a
hypergeometric random variable such that

P(X = x) =
(r
x

)(n−r
k−x

)(n
k

) 1 x∈{max{0,n−(k−r)},...,min{k,r}}

2. Suppose that the initial catch consisted of r = 50 animals ,
which are marked and then released. If a subsequent catch
consists of k = 40 animals of which x = 4 are marked, then
we would estimate that there are some 500 animals in the
region.
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To estimate the number of defective products produced in an
industrial process, we can sample k products from a stock of n
products. Assuming that defective products and good quality
products are mixed, then the number of defective products X is
a hypergeometric random variable such that

P(X = x) =
(r
x

)(n−r
k−x

)(n
k

) 1 x∈{max{0,n−(k−r)},...,min{k,r}}

hence, the number of defective products in the stock can be
estimated as r ≈ x

kn.
3. Suppose that we take a sample of k = 50 screws from a

stock of n = 500 pieces. If there is x = 1 defective screw in
the sample, then we would estimate that there are
approximately 10 defective pieces in the stock.

53



Introduction Definitions Discrete Random Variables

Geometric Distribution

Suppose that independent trials, each having a probability p,
0 < p < 1, of being a success, are performed until a success
occurs. If we let X equal the number of trials required, then

P(X = x) = (1− p)x−1p1 x∈{1,2,...}

Any random variable X with this probability function is said to
be a geometric random variable with parameter p, denoted as
X ∼ Geom(p).
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Example

4. An urn contains N white and M black balls. Balls are
randomly selected, one at a time, until a black one is
obtained. If we assume that each ball selected is replaced
before the next one is drawn, what is the probability that
(a) exactly n draws are needed?
(b) at least k draws are needed?

If we let X denote the number of draws needed to select a
black ball, then X ∼ Geom(p) with p = M/(M +N).
Hence,
(a).

P(X = n) =
(

N

M +N

)n−1 M

M +N
= MNn−1

(M +N)n
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(b).

P(X ≥ k) = M

M +N

∞∑
x=k

(
N

M +N

)n−1

=

(
M

M+N

) (
N

M+N

)k−1(
1− N

M+N

)
=
(

N

M +N

)k−1

Of course, part (b) could have been obtained directly, since the
probability that at least k trials are necessary to obtain a
success is equal to the probability that the first k − 1 trials are
all failures. That is, for a geometric random variable,

P(X ≥ k) = (1− p)k−1
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Negative Binomial Distribution

This distribution appears in the context of a succession of
Bernoulli experiments with probability of success p, when we
ask a similar question to the one of the geometric distribution,
but instead of asking the number of experiments to obtain the
first success, we ask the number of experiments to have k
successes.
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Let X be this variable. X takes the value of x if and only if the
k-th success happens in the x-rh experiment, this is, in the first
x− 1 there are k − 1 successes and the h-th experiment is a
success. The probability of the latter is p, while the probability
of k−1 successes in x−1 experiments is a binomial distribution:(

x− 1
k − 1

)
pk−1qx−k.

Since the experiments are independent, we have that P(X = x)
is the product of these expressions, that is

P(X = x) =
(
x− 1
k − 1

)
pkqx−k.
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Example
The Banach match problem. At all times, a pipe-smoking
mathematician carries 2 matchboxes–1 in his left-hand pocket
and 1 in his right-hand pocket. Each time he needs a match, he
is equally likely to take it from either pocket. Consider the
moment when the mathematician first discovers that one of his
matchboxes is empty. If it is assumed that both matchboxes
initially contained N matches, what is the probability that
there are exactly k matches, k = 0, 1, ..., N , in the other box?

The Polish mathematician Stefan Banach used to meet other
mathematicians at the Scottish Café in Lwów, Poland. Her wife
 Lucja Banach suggested the use of a notebook to write the
problems and solutions there discussed. This notebook is known
as the Scottish Book. The previous problem is the last one of
the book.
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Let E denote the event that the mathematician first discovers
that the right-hand matchbox is empty and that there are k
matches in the left-hand box at the time. Now, this event will
occur if and only if the (N + 1)th choice of the right-hand
matchbox is made at the (N + 1 +N − k)th trial. From the
probability mass of a negative binomial distribution (with
p = 1/2 , k = N + 1, and x = 2N − k + 1), we see that

P(E) =
(

2N − k
N

)(1
2

)2N−k+1
.

Since there is an equal probability that it is the left-hand box
that is first discovered to be empty and there are k matches in
the right-hand box at that time, the desired result is

2P(E) =
(

2N − k
N

)(1
2

)2N−k
.
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