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Conditional Probability, Introduction

Consider a population of 20 students, 14 study Medicine and 6
study Engineering. We select at random without replacing two
students and consider the events:
E1 : “The first student studies Medicine.”
E2 : “The second student studies Engineering.”
The sample space consists of the collection of order pairs
(ai, aj); (ai, bk); (bk, ai); (bk, bh) where ai are students of
Medicine and bj are students of Engineering,
i 6= j; k 6= h; i, j ≤ 14; h, k ≤ 6.
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The number of elementary events is 20× 19. The next table
shows the number of sample points that correspond to the
partition of Ω accordingly yo the events E1, E2 and their
complements. The last column and row show the total.

Ec
2 E2

E1 14× 13 14× 6 14× 19
Ec

1 6× 14 6× 5 6× 19
14× 19 6× 19 20× 19

Using this table, it is easy to calculate probabilities like

P(E1 ∩ E2) = 14× 6
20× 19;

P(E1) = 14× 19
20× 19; P(Ec

1 ∩ E2) = 6× 5
20× 19 .
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Consider the next problem: If we know that the first student
studies Medicine, what is the probability that second student
studies Medicine too?

In this case, we can see from the table that there are 14× 19
possible results, from which 14× 13 are favorable to the event
E2, thus the probability of the event of interest is

14× 13
14× 19 = (14× 13)/(20× 19)

(14× 19)/(20× 19) = P(E1 ∩ Ec
2)

P(E1)
The probability that we calculated is called “conditional
probability of E2 given E1” and is denoted as P(E2|E1)
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Observe that P(Ec
2) = 14×19

20×19 = 7
10 does not coincide

P(Ec
2|E1) = 13

19 . Since we know that E1 happened we have
additional information that modifies the sample space: the new
population, for the second selection does not coincide with the
original, since there are 13 students of medicine form a total of
19 possible students.

Note that if the sampling is done with replacement, the result
of the first extraction does not gives any information for the
second. In this case:

P(Ec
2|E1) = P(Ec

2) = 7
10
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Conditional Probability
Let be (Ω,A,P) a probability space and let be B ∈ A such that
P(B) > 0. Define a new function P(·|B : A → R) as

P(A|B) = P(A ∩B)
P(B) , for all A ∈ A.

This function is a (measure of) probability; since:
1. P(A|B) ≥ 0 for all A ∈ A.
2. P(Ω|B) = P(Ω∩B)

P(B) = P(B)
P(B) = 1.

3. Let be A1, A2, . . . disjoint sets in A, then

P
( ∞⋃

n=1
An|B

)
= P (B ∩

⋃∞
n=1 An)

P(B) = P (
⋃∞

n=1 B ∩An)
P(B)

=
∑∞

n=1 P(B ∩An)
P(B) =

∞∑
n=1

P(An|B).
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Examples of Conditional Probability

1. We throw a dice twice.
(a) If the sum of the results is 8, what is the probability that

the first number was k, 1 ≤ k ≤ 6?
(b) If the first number was 3, what is the probability that the

second was k, 1 ≤ k ≤ 6?
(c) If the first number was 3, what is the probability that the

sum of both is 7?
Let be X the result of the first throw and Y the result of
the second. We know that P(X = k) = P(Y = k) = 1/6,
1 ≤ k ≤ 6.
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(a). We want to calculate

P(X = k|X + Y = 8) = P((X = k) ∩ (X + Y = 8))
P(X + Y = 8)

For the probability in the denominator, observe that there are 5
results whose sum is 8 from a total of 36 possible results, which
correspond to the order pairs (2, 6); (3, 5); (4, 4); (5, 3); (6, 2), so
the probability in the denominator is 5/36. On the other hand,
the probability in the numerator is zero if k = 1. For 2 ≤ k ≤ 6
there is just one result for the second throw which is Y = 8− k,
so the probability in the numerator is 1/36. Finally, we have

P(X = k|X + Y = 8) =
{

1/5 if 2 ≤ k ≤ 6,
0 if k = 1.
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(b). We want to calculate

P(Y = k|X = 3) = P((Y = k) ∩ (X = 3))
P(X = 3)

We know that P(X = 3) = 1/6. To find the probability in the
numerator observe that from 36 possible results just one
correspond to the event (Y = k) ∩ (X = 3), thus that
probability is 1/36. Hence

P(Y = k|X = 3) = 1/36
1/6 = 1

6

This result is equal to P(Y = k) which coincides with the
intuition, since knowing the result of the first throw does not
affect in any way the second.
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(c). In this case, we are interested in

P(X + Y = 7|X = 3) = P(X + Y = 7) ∩ (X = 3)
P(X = 3) ,

but

(X+Y = 7)∩(X = 3) = (3+Y = 7)∩(X = 3) = (Y = 4)∩(X = 3),

so

P(X + Y = 7|X = 3) = P((X + Y = 7) ∩ (X = 3))
P(X = 3)

= P((Y = 4) ∩ (X = 3))
P(X = 3)

and from the result of (b) we know that this probability is 1/6.
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2. We throw two dice until the sum is 7 or 8. If the sum is 7
player A wins, if it is 8 player B wins. What is the
probability that A wins?

To solve this problem, note that the probability that A
wins is the conditional probability that the sum is 7, given
that the sum has been 7 or 8, that is

P(A) = P({7})
P({7, 8}) =

6
36
11
36

= 6
11 .
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3. We consider now a frequent situation in quality control and
medical prevention.

To control some disease in a population where the
proportion of sick people is p it is used a medical exam to
detect the illness. It is known that the probability that the
exam detect the illness from a sick person is 0.90, and the
probability that the exam classify a healthy person as sick
is 0.01. Find the probability that a person is sick when the
medical exam says so.
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To answer the question, we choose at random a person and
consider the events:
S :“the person is sick.” R :“the exam detects the person as sick.”
We want to calculate

P(S|R) = P(S ∩R)
P(R)

we know that

P(S) = p,

P(R|S) = P(S ∩R)
P(S) = 0.90,P(R|Sc) = P(Sc ∩R)

P(Sc) = 0.01.

From the first two equations, we have

P(S ∩R) = 0.90p

and from the first and third

P(Sc ∩R) = 0.01(1− p)
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Hence,

P(R) = P(S ∩R) + P(Sc ∩R) = 0.90p + 0.01(1− p)

and
P(S|R) = 0.90p

0.90p + 0.01(1− p) = 90p

89p + 1
In particular if p = 1/30, P (S|R) ≈ 0.76.
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Considering P (S|R) as function of p we observe that if the
proportion p of sick people is small, the method of massive
control is insufficient, since P (S|R) is far of 1. For example, if
p = 0.001, P (S|R) ≈ 0.083

p
00 0.5 1.0

0

0.5

1.0
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Properties of Conditional Probability

1. If A and B are disjoint, then P(A|B) = 0.
Indeed,

A ∩B = ∅⇒ P(A ∩B) = 0 and P(A|B) = P(A ∩B)
P(B)

2. If B ⊂ A, then P(A|B) = 1, since P(A ∩B) = P(B).
3. Multiplication Law. For any finite collection of events

A1, . . . , An, we have

P(A1 ∩A2 ∩ · · · ∩An)
= P(A1|A2 ∩A3 ∩ · · · ∩An)P(A2|A3 ∩ · · · ∩An) · · ·P(An−1|An)P(An)

Always that P(A2 ∩A3 ∩ · · · ∩An) > 0.
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Proof
Because

P(An) ≥ P(An−1 ∩An) ≥ · · · ≥ P(A2 ∩A3 ∩ · · · ∩An) > 0

all the conditional probabilities are well defined. If we explicitly
write the right-hand side of the equation, we have

P(A1 ∩A2 ∩ · · · ∩An)
P(A2 ∩ · · · ∩An)

P(A2 ∩ · · · ∩An)
P(A3 ∩ · · · ∩An) · · ·

P(An−1 ∩An)
P(An) P(An)

and simplifying we have the left.hand side of the equation.
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Examples of Conditional Probability

4. We select at random without replacement three cards from
a pack of 52 cards. Find the probability that none of the
cards is spade.

Let be Ai: “The i-th card is not spade”. We want to
calculate

P(A1 ∩A2 ∩A3) = P(A1)P(A2|A1)P(A3|A2 ∩A1)

= 39
52

38
51

37
50 ≈ 0.4135
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Law of Total Probability
Le be B1, B2, . . . a finite or numerable family of pairwise
disjoint sets whose union is Ω. Then, for any event A,

P(A) =
∑

i

P(A|Bi)P(Bi)

where the sum is over all the indexes i such that P(Bi) > 0.

Proof

P(A) = P(A ∩ Ω) = P(A ∩ (∪iBi))
= P(∪i(A ∩Bi) =

∑
i

P(A ∩Bi)

=
∑

i

P(A|Bi)P(Bi).
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Examples of Conditional Probability

5. There are n cards with names in a bag, and we select two,
successively and without replacement. If m < n of the
cards have female names, find the probability that the
second card has a female name.

Let be A the event whose probability we want to find and
F :“The first card has a female name”. The events F and
F c are disjoint and form a partition of the sample space.
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Thus,
P(A) = P(A|F )P(F ) + P(A|F c)P(F c)

and

P(F ) = m

n
;P(F c) = n−m

n
;P(A|F ) = m− 1

n− 1 ;P(A|F c) = m

n− 1

Therefore,

P(A) = (m− 1)
(n− 1)

m

n
+ m

(n− 1)
(n−m)

n

= m

(n− 1)n(m− 1 + n−m) = m

n
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6. What is the probability of getting 6 distinct numbers after
throwing 6 dice?

Consider the events:
E1: “The first dice shows any number.”
E2: “The number in the second dice is different from the first.”
E3: “The number in the third dice is different from the first and

second.”
And so on.

Then, we have
P(E1) = 1

P(E2|E1) = 5/6
...

P(E6|E1 ∩ E2 ∩ · · · ∩ E5) = 1/6
therefore,

P(E1 ∩ E2 ∩ · · · ∩ E6) = 1× 5/6× · · · 1/6 = 6!
66 ≈ 0.015 25
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7. We select two cards from a pack of 52 cards. Find the
probability that the selected cards are an ace and a 10.

Consider the events:
A1: “The first card is an ace”.
A2: “The second card is an ace”. B1: “The first card is a
10”.
B2: “The second card is a 10”.
C: “We select an ace and a 10”.
Thus

P(C) = P(B2|A1)P(A1) + P(A2|B1)P(B1)

= 4
51

4
52 + 4

51
4
52

= 8
663
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8. Craps. The game of craps has the next rules. The player
throws two dice, if the result is 7 or 11, he/she wins. If it is
2, 3 or 12, he/she looses. If the sum is any other number,
that number becomes his/her target and from that moment
the player throws the dice until they sum his/her target, in
such case the player wins, or when the sum is 7, in such
case the player looses. What is the probability of winning
this game?
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Let be Aj the event of getting j in the first throw, with
j = 2, 3, . . . , 12 and G the event that the player wins. By law of
total probability we have

P(G) =
12∑

j=2
P(G|Aj)P(Aj)

We know that if j = 2, 3 or 12, the player looses, so the
corresponding terms in the sum are 0. If j = 7 or 11, the player
wins, so P(G|Aj) = 1 for j = 1, 7. For the rest of the results we
need to calculate the conditional probability P(G|Aj) for
j = 4, 5, 6, 8, 9, 10.
From a previous example, we know that

P(G|Aj) = P({j}|{j, 7}) = P({j})
P({j, 7})
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Using the last formula, we have

P(G|A4) = P(G|A10) = 1
3; P(G|A5) = P(G|A9) = 2

5;

P(G|A6) = P(G|A8) = 5
11

Therefore,

P(G) =
11∑

j=4
P(G|Aj)P(Aj)

= 1
3 ×

3
36 + 2

5 ×
4
36 + 5

11 ×
5
36 + 1× 6

36
+ 5

11 ×
5
36 + 2

5 ×
4
36 + 1

3 ×
3
36 + 1× 2

36 ≈ 0.4929

29



Bayes’ Theorem



Conditional Prob. Properties Total Prob. Bayes’ Theorem Independence

Bayes’ Theorem

Let be A, B events and P(B) 6= 0, then

P(A|B) = P(B|A)P(A)
P(B)

Furthermore, let be B1, B2, . . . a finite or numerable partition of
Ω and let be A any other event such that P(A) > 0. Then

P(Bi|A) = P(A|Bi)∑
j P(A|Bj)P(Bj)

31



Conditional Prob. Properties Total Prob. Bayes’ Theorem Independence

Examples of Bayes’ Theorem
1. From 100 patients in a hospital with certain disease,10 are

chosen for a treatment that augments the probability of
heal from 0.5 to 0.75. Time after, a medic finds a healed
patient, what is the probability that the patient received
the treatment?

Let be
H : “the patient is healed’.’
T : “the patient received the treatment”.

From the information given we have

P(T ) = 10
100 = 0.1; P(T c) = 90

100 = 0.9

P(H|T ) = 0.75; P(H|T c) = 0.5
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Using the Bayes’ theorem

P(T |H) = P(H|T )P(T )
P(H|T )P(T ) + P(H|T c)P(T c)

= 0.75× 0.1
0.75× 0.1 + 0.5× 0.9 = 1

7
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2. Three boxes contain two coins each one. In the first, B1,
both are coins of gold; in the second, B2, both are coins of
silver and in the third, B3, one coin is of gold and one coin
is of silver. We pick one box at random and then one coin
also at random. If the coin is of gold, what is the
probability that it comes from the box with two gold coins?

We know that P(Bi) = 1
3 . Let be G : “we select a gold

coin”. Using Bayes’ theorem

P(B1|G) = P(G|B1)P(B1)
P(G|B1)P(B1) + P(G|B2)P(B2) + P(G|B3)P(B3)

=
1× 1

3
1× 1

3 + 0× 1
3 + 1

2 ×
1
3

= 2
3
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3. Three mutually exclusive diseases A, B and C have the
same symptoms H. Accordingly to a clinical study the
probabilities of getting the diseases are 0.01; 0.005 and 0.02,
respectively. Furthermore, the probability that a patient
shows the symptoms H for each disease are 0.90; 0.95 and
0.75, respectively. If a sick person has the symptoms H,
what is the probability that has the disease A?

We know that

P(A) = 0.01; P(B) = 0.005; P(C) = 0.02

P(H|A) = 0.90; P(H|B) = 0.95 P(H|C) = 0.75
using Bayes’ theorem

P(A|H) = P(H|A)P(A)
P(H|A)P(A) + P(H|B)P(B) + P(H|C)P(C)

= 0.90× 0.01
0.90× 0.01 + 0.95× 0.005 + 0.75× 0.02 = 2

3 ≈ 0.313
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4. A student answers a multiple-select question with four
possible options. Assume that the probability that the
student knows the answer to the question is 0.8 and the
probability that he/she guesses is 0.2. If the student guess,
the probability of selecting the correct answer is 0.25. If
the student answered correctly, what is the probability that
the student really knew the answer?
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Define the next events:
K : “the student knows the answer”.
C : “the student answers correctly”.
We know that

P(K) = 0.8; P(C|K) = 1; P(C|Kc) = 0.25

using Bayes’ theorem

P(K|C) = P(C|K)P(K)
P(C|K)P(K) + P(C|Kc)P(Kc)

= 1× 0.8
1× 0.8 + 0.25× 0.2 = 0.941
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5. The Monty Hall problem. Suppose you’re on a game
show, and you’re given the choice of three doors. Behind
one door is a car, behind the others, goats. You pick a
door, say door 1, and the host, who knows what’s behind
the doors, opens another door, say door 3, which has a
goat. He says to you, ‘Do you want to pick door 2?’ Is it to
your advantage to switch your choice of doors?
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Define the next events:
H : “the host opens door 3”.
Di : “the car is behind door i”.
Given that the player have chosen door 1, from the rules of the
game, we know that

P(Di) = 1
3; P(H|D1) = 1

2; P(H|D2) = 1; P(H|D3) = 0.

39
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We want to calculate P(D1|H) and P(D2|H). Using Bayes’
theorem to find the first probability, we have

P(D1|H) = P(H|D1)P(D1)
P(H|D1)P(D1) + P(H|D2)P(D2) + P(H|D3)P(D3)

=
1
2 ×

1
3

1
2 ×

1
3 + 1× 1

3 + 0× 1
3

= 1
3

Analogously,

P(D2|H) = P(H|D2)P(D2)
P(H|D1)P(D1) + P(H|D2)P(D2) + P(H|D3)P(D3)

=
1× 1

3
1
2 ×

1
3 + 1× 1

3 + 0× 1
3

= 2
3

Therefore, by switching, the player double their chances from 1
3

to 2
3 .
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One as the player might think in the next way: After I have
selected a door, one of the remaining doors is going to have a
goat. And I already know that the host is going to open a door
with a goat behind it. Thus, when the host opens a door with a
goat behind it, he/she is giving me no extra information.
Hence, the probability that ‘the car is behind door 1’ or ‘the car
is behind door 2’ have the same probability, i.e. 1/2 each one.

We are now facing a paradox, what is wrong with this way of
reasoning? and what has created this apparent contradiction?
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6. Suppose you take a medical test to see if you have a
disease, and it comes back positive. How likely is it that
you have the disease? For specificity, let’s say the disease is
breast cancer, and the test is a mammogram.

In this example the forward probability is the probability
of a positive test, given that you have the disease:
P(test|disease). This is what a doctor would call the
“sensitivity” of the test, or its ability to correctly detect an
illness. Generally it is the same for all types of patients,
because it depends only on the technical capability of the
testing instrument to detect the abnormalities associated
with the disease.
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The inverse probability is the one you surely care more about:
What is the probability that I have the disease, given that the
test came out positive? This is P(disease|test). This probability
is not necessarily the same for all types of patients; we would
certainly view the positive test with more alarm in a patient
with a family history of the disease than in one with no such
history.
Suppose a forty-year-old woman gets a mammogram to check
for breast cancer, and it comes back positive. The hypothesis,
D (for “disease”), is that she has cancer. The evidence, T (for
“test”), is the result of the mammogram. How strongly should
she believe the hypothesis?
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We can answer this question by rewriting Baye’s rule as follows:

P(D|T ) = (likelihood tratio)× (prior probability)

where the new term “likelihood ratio” is given by P(T |D)/P(T ).
It measures how much more likely the positive test is in people
with the disease than the general population. This formula tells
us that the new evidence T augments the probability of D by a
fixed ratio, no matter what the prior probability was.
For a typical forty-year-old woman, the probability of getting
breast cancer in the next year is about one in seven hundred, so
we’ll use that as our prior probability, that is P(D) = 1/700 and
P(Dc) = 699/700.
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To compute the likelihood ratio, we need to know P(T |D) and
P(T ). In the medical context, P(T |D) is the sensitivity of the
mammogram–the probability that it will come back positive if
you have cancer. According to the Breast Cancer Surveillance
Consortium (BCSC), the sensitivity of mammograms for
forty-year-old women is 73 percent, that is P(T |D) = 0.73.
The denominator P(T ) is a but trickier. A positive test, T, can
come both from patients who have the disease and from
patients who don’t. It can be computed through the formula

P(T ) = P(T |D)P(D) + P(T |Dc)P(Dc).

P(T |Dc) is known as the false positive rate. According to the
BCSC, the false positive rate for forty-year-old women is about
12 percent, that is P(T |Dc) = 0.12.
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Hence,

P(T ) =
( 1

700

)
× 0.73 +

(699
700

)
× 0.12 ≈ 0.121.

The likelihood ratio is
0.73
0.121 ≈ 6.

Since her prior probability was one |/700, her updated
probability is

P(D|T ) = 6× 1
700 ≈ 1/116.
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However, the story would be very different if the patient has
propensity to have cancer. Denote by H the event “the patient
has propensity to develop cancer” then,

P(D|T, H) = P(T |D, H)
P(T ) P(D|H)

= P(T |D)
P(T ) P(D|H)

= 6P(D|H)

Say, for example that a woman has a gene that put her at high
risk for breast cancer–say, P(D|H) = 1/18. Then a positive test
would increase the probability to P(D|T, H) = 1/3.
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Brief History of Bayes’ Rule

Thomas Bayes was concerned with the probabilities of two
events, one (the hypothesis) occurring before the other (the
evidence). To set the context, in 1748, the Scottish philosopher
David Hume had written an essay titled “On Miracles,” in
which he argued that eyewitness testimony could never prove
that a miracle had happened. Hume’s main point was that
inherently fallible evidence cannot overrule a proposition with
the force of natural law, such as “Dead people stay dead.”
For Bayes, this assertion provoked a natural question: How
much evidence would it take to convince us that something we
consider improbable has actually happened? When does a
hypothesis cross the line from impossibility to improbability
and even to probability or virtual certainty?
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Bayes’ rule acts as a normative rule for updating beliefs in
response to evidence. It implies that the more surprising the
evidence e–that is, the smaller P(e) is–the more convinced one
should become of its case H.
For example if e is a miracle (“Christ rose from the dead”), and
H is a closely related hypothesis (“Christ is the son of God”),
our degree of belief in H is very dramatically increased if we
know for a fact that e is true. The more miraculous the miracle,
the more credible the hypothesis that explains its occurrence.

P(H|e) = P(H ∩ e)
P(e) =�

���:
'1P(e|H)

P(e) P(H)
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Independence

We say that two events A and B are independent if

P(A ∩B) = P(A)P(B).

If A and B are independent then,

P(B|A) = P(A ∩B)
P(A) = P(A)P(B)

P(A) = P(B).

That is, the occurrence of A does not give information on the
occurrence of B.
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If A and B are independent, so do a) A and Bc; b) Ac and Bc

P(Ac ∩Bc) = P((A ∪B)c) = 1− P(A ∪B)
= 1− P(A)− P(B) + P(A ∩B)
= [1− P(A)][1− P(B)]
= P(Ac)P(Bc).
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Examples of Independence
1. A stock of 10 objects has 4 defective products and 6 of

good quality. Two objects are extracted successively
without replacement. Let be the events D1 : “the first
object is defective” and D2 : “the second object is
defective”. Are these events independent? What happens if
the objects are extracted with replacement?

In the first case we can find P(D2) as:

P(D2) = P(D2|D1)P(D1) + P(D2|Dc
1)P(Dc

1)

= 3
9

4
10 + 4

9
6
10 = 2

5
On the other hand,

P(D2|D1) = 3
9 6=

2
5 = P(D2)

so D1 and D2 are not independent.
54



Conditional Prob. Properties Total Prob. Bayes’ Theorem Independence

If, the objects are selected with replacement, then
P(D1) = P(D2) = 4

10 and P(D1 ∩D2) =
(

4
10

)2
, so the events are

independent. N

We can generalize the definition of independence to any family
of events:
Let be C = {Ai, i ∈ I} a family of events. We say that the
events Ai are independent if for any finite collection of event
Ai1 , Ai2 , . . . , Ain ∈ C, it is satisfied:

P

 n⋂
j=1

Aij

 =
n∏

j=1
P
(
Aij

)
In that case we say that C is a family of independent events.
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Note that in the definition we only consider finite events of C,
but we consider all the finite collections. For example, if the
family has three events, it is not enough to verify the
independent for every pair of events. Indeed, consider the
experiment of throwing two dice and C = {A1, A2, A3}, where
A1 : “the first dice shows 6”.
A2 : “the second dice shows 1”.
A3 : “the sum of the dice is 7”.
Clearly,

P(A1) = P(A2) = P(A3) = 1
6

and

P(A1 ∩A2) = P(A1 ∩A3) = P(A2 ∩A3) = 1
6 ×

1
6

but
P(A1 ∩A2 ∩A3) = 1

36 6=
1
6 ×

1
6 ×

1
6

so the three events are not independent.
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2. If A and B are independent events and the probability that
both happen is 0.16, while the probability that none
happen s 0.36, find P(A) and P(B).

We know that P(A ∩B) = 0.16 and P((A ∪B)c) = 0.36, so

P(A ∪B) = 0.64
= P(A) + P(B)− P(A ∩B)
= P(A) + P(B)− 0.16.

Thus, we have the next equations

P(A) + P(B) = 0.8,

P(A)P(B) = 0.16.

From there, we obtain P(A) = P(B) = 0.4.
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3. What is the probability of getting three 6 when throwing 8
dice?

The problem is equivalent to find the probability of getting
three times 6 throwing 8 times the same dice. Let be Ei

the event “we get a 6 in the i-th throw”. Let’s find the the
probability that the first three are 6 and the others are not,
i.e.

P(A1 ∩ E2 ∩ E3 ∩ Ec
4 ∩ Ec

5 ∩ Ec
6 ∩ Ec

7 ∩ Ec
8)

by independence (1
6

)3 (5
6

)5
.

This is the probability of any set of 8 throws with exactly
three 6. Since there are

(8
3
)

of this type, the probability of
interest is (

8
3

)(1
6

)3 (5
6

)5
.
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4. The first son of a woman has hemophilia. There are no
previous cases of hemophilia in the woman’s family, so the
woman thinks that her son did not inherit the hemophilia
from her and that the disease but it has been a mutation.
Therefore, the probability that a second son has
hemophilia should be a mutation again, which is a small
number, m (m = 10−5). What is the probability that a
second son has hemophilia if the first one has hemophilia?
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Define the events:
A: “the mother carrier the disease”.
H1: “the first son has hemophilia”.
H2: “the second son has hemophilia”.

A man has chromosome XY and has hemophilia if and only if
instead of the chromosome X has a chromosome X ′ with a gene
that produces the hemophilia. Let be m the probability that a
chromosome X mutates into a chromosome X ′.
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The mother has two chromosome X and the event A happens if
at least one of those chromosomes mutates, which happens with
probability

P(A) = 1− (1−m)2 = 2m−m2 ≈ 2m

where we have assumed that mutations take place
independently, and we have discarded the term m2 since it is
much smaller than 2m.
If the mother carriers the disease and one of the chromosomes is
X ′ her son will have probability 2/2 of inherit the chromosome
X, that is

P(H1|A) = P(Hc
1|A) = 1

2
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On the other hand, if the mother does not carrier the disease,
her son will have hemophilia if the chromosome X mutates:

P(H1|Ac) = m.

Moreover, by independence, we have

P(H2|A∩H1) = P(Hc
2|A∩H1) = P(H2|A∩Hc

1) = P(Hc
2|A∩Hc

1) = 1
2

P(H2|Ac ∩H1) = P(H2|Ac ∩Hc
1) = m.

We want to calculate

P(H2|H1) = P(H1 ∩H2)
P(H1)
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P(H1 ∩H2) = P(A ∩H1 ∩H2) + P(Ac ∩H1 ∩H2)
= P(H2|H1 ∩A)P(H1|A)P(A) + P(H2|H1 ∩Ac)P(H1|Ac)P(Ac)

≈ 2m

(1
2

)2
+ (1− 2m)m2

= m

2 + m2 − 2m3 ≈ m

2 ,

on the other hand

P(H1) = P(H1|A)P(A) + P(H1|Ac)P(Ac)

≈ 2m

(1
2

)
+ m(1− 2m)

≈ 2m.

Therefore,
P(H2|H1 ≈

m/2
2m

) = 1
4 .
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5. The problem of the points. Independent trials resulting
in a success with probability p and a failure with
probability 1− p are performed. What is the probability
that n successes occur before m failures? If we think of A
and B as playing a game such that A gains 1 point when a
success occurs and B gains 1 point when a failure occurs,
then the desired probability is the probability that A would
win if the game were to be continued in a position where A
needed n and B needed m more points to win.
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This problem was posed to the French mathematician Blaise
Pascal in 1654 by the Chevalier de Méré, who was a professional
gambler at that time. In attacking the problem, Pascal
introduced the important idea that the proportion of the prize
deserved by the competitors should depend on their respective
probabilities of winning if the game were to be continued at
that point. Pascal initiated a correspondence with the famous
French Pierre de Fermat, who had a great reputation as a
mathematician. This celebrated correspondence, dated by some
as the birth date of probability theory.
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Fermat argued that, in order for n successes to occur before m
failures, it is necessary and sufficient that there be at least n
successes in the first m + n− 1 trials. (Even if the game were to
end before a total of m + n− 1 trials were completed, we could
still imagine that the necessary additional trials were
performed.) This is true, for if there are at least n successes in
the first m + n− 1 trials, there could be at most m− 1 failures
in those m + n− 1 trials; thus, n successes would occur before
m failures.
Hence, since the probability of exactly k successes in m + n− 1
trials is (

m + n− 1
k

)
pk(1− p)m+n−1,

it follows that the desired probability of n successes before m
failures is

m+n−1∑
k=n

(
m + n− 1

k

)
pk(1− p)m+n−1.
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