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Randomness

In nature, there are some phenomena that are say to be
random, which means that they cannot be predicted without
uncertainty. The randomness of the phenomena is not
necessarily a property of the events by themselves, but due to
the position of the observer.

For example, an eclipse is no longer a random event since we
can predict them with complete certainty using gravitational
mechanics. However, for someone that ignores gravitational
mechanics, en eclipse is essentially a random phenomenon.
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Probability Theory

The objective of the probability theory is to develop and study
mathematical models for random phenomena which, by
definition, cannot be predicted with complete certainty.
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Brief History of Probability Theory

The Theory of Probability has a long history, which many
authors date back at least to the XVII century when, at the
request of their friend, the Chevalier de Meré, B. Pascal and P.
de Fermat developed the mathematical formulation for
gambling games, however it was during the XX century that the
theory was notably raised.

One reason for this lack in the development of the area as other
fields of the Mathematics, was the absence of an appropriate
axiomatic system. In 1933, A. N. Kolmogorov proposed an
axiomatic system through the ideas of Measure Theory,
developed at the beginning of the century by H. L. Lebesgue.
This axiomatic system models the random experiments using a
probability space.
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Probability Space

A probability space is defined by a tuple (Ω,A,P), where
I Ω is called the sample space which contains all the possible

results of the experiment.
I A is a system of subsets of ω whose elements are known as

events. A forms a σ−algebra of Ω.
I P : A → [0, 1] is the function that quantifies the uncertainty

for each event A ∈ A. P is called a probability measure.
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Sample Space

Every possible result of a random experiment is called an
elementary event and the set of the elementary events is called
the sample space. Usually, this set is denoted by Ω and the
elementary events are denoted by ω.
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Examples of Random Experiments and Sample Spaces

1. In a fabric, one product is tested to determined if it is
defective. In this case we can take Ω = {G,D}, where G
means good quality and D means defective. On the other
hand, if n products are tested, then we can take
Ω = {(ε1, ε2, . . . , εn), s.t. εi = 1 or 0, i = 1 . . . , n}, where
εi = 0 means that the i-th product is fine and εi = 1 means
that it is defective. That is, Ω is the set of the n-tuples or
vectors of dimension n with zero and one. In this case Ω
has 2n elementary events and, in particular

∑n
i=1 εi

represents the number of defective products in the
elementary event ω = (ε1, ε2, . . . , εn).
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2. In some point of a highway we count the number of cars
that pass by in some lapse of time. In this case, we can
take Ω = {0, 1, 2, . . .}. However, we can take other sets as
sample space. For example, if we know that the number of
cars is at maximum 1000, we can consider
Ω1 = {n, s.t. 0 ≤ n ≤ 1000}.

3. In a fabric of electronic components, we take n at random
which are connected until each one of them failed,observing
the lifetime of the each one If it is just one component, we
can take Ω = {t, s.t. t ∈ R, t ≥ 0}.

4. We choose at random one point in a disk of of radius equal
1. In this case the sample space is the set of points in the
plane inside the circumference of radius 1:
Ω = {(x, y), s.t. x2 + y2 ≤ 1}.
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Events

In practice, when an experiment is made we are interested to
know if some subset of Ω happened. These subsets are called
events. In example 1 we can be interested in the subset: “from
n products there are d defective”, that is, the subset of Ω
defined by

{(ε1, . . . , εn), s.t. ε = 1 or 0,
n∑

i=1
εi = d}

Therefore, we are interested into a family of subsets of Ω, i.e.,
families A of events. These families are the second component
of our probabilistic models, and must satisfy some conditions.
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σ-algebra

The family of events A must satisfy:
(a) Ω ∈ A, that is the result of the experiment must be an

element of Ω. Ω is called a certain event.
(b) If A ∈ A then Ac ∈ A, where

Ac = Ω \A = {ω, s.t. ω ∈ Ω, ω /∈ A}. That is, if A in an
event then “A does not happen” is also an event.

(c) If An ∈ A (n = 1, 2, . . .) then ∪n=1An ∈ A. That is, the
family A must satisfies that if A1, A2, . . . , An, . . . are
events, “Some of the An” is also an event.

A family A that satisfies these conditions is called a σ-algebra
of subsets of Ω.
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Examples of Sample Spaces and σ-algebras

1. For any set Ω, the simplest σ-algebra is the trivial
T = {Ω,∅}. The largest σ-algebra of subsets of Ω is P (Ω),
the power set of Ω, i.e. the set of all the subsets of Ω. Any
other σ-algebra must contain T and must be contained in
P (Ω).
In simple experiments with a finite sample space, we
normally take as the σ-algebra the power set of Ω.
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2. Sampling with Replacement. From the production of a
factory we take at random one product and we determine if
it is defective or not (D or G, respectively). We put the
product again in the stock and we take again a product at
random, this product could be the same as in the first
time. We repeat this procedure one more time, so we have
extracted three products.
The sample space is

Ω = {GGG,GGD,GDG,DGG,GDD,DGD,DDG,DDD}

There are 23 elementary events since in every extraction
there are two possible results.
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Probability Measure
The third component of the model is a (measure of) probability.

Let be Ω a sample space and A a family of events of Ω, that is,
a σ-algebra of subsets of Ω. We want to assign to each event
A ∈ A a real number P(A), which is called the probability of A,
satisfying the conditions:

1. P(A) ≥ 0 for all A ∈ Ω. The probability of any event is a
non-negative real number.

2. P(Ω) = 1. A certain event has probability equals to one.
3. If An ∈ A, n = 1, 2, . . . are pairwise disjoint sets, i.e. such

that Ai ∩Aj = ∅ if i 6= j, then

P
( ∞⋃

n=1
An

)
=
∞∑

i=1
P(An)
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Some Properties of the Probability Measure

1. P(∅) = 0.

Take A1 = Ω and Ai = ∅, i = 2, 3, . . . Then Ai ∈ A for
any i and Ai ∪Aj = ∅ if i 6= j. Hence,

P(Ω) = P
( ∞⋃

i=1
Ai

)
= P(Ω) +

∞∑
i=2

P(Ai)

which implies that
∑∞

i=2 P(Ai) = 0, but since P(Ai) ≥ 0 for
all i, we have that P(Ai) = 0 for i ≥ 2. We conclude that
P(∅) = 0.
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2. If A1 ∩A2 = ∅, then P(A1 ∪A2) = P(A1) + P(A2).

Consider Ai = ∅, i ≥ 3 and apply condition 3 from the
definition of probability measure, as before.

3. If A1 ⊂ A2, then P(A1) ≤ P(A2).

Note that A2 = A1 ∪ (A2 ∩Ac
1), then

P(A2) = P(A1) + P(A2 ∩Ac
1). From here we conclude that

P(A2) ≥ P(A1), since P(A2 ∩Ac
1) ≥ 0.

Ω

A1

A2
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4. If A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · , then
P(∪∞n=1An) = limn→∞ P(An).

Let be B1 = A1 and Bn = An ∩Ac
n−1 if n > 1, we have that

∪∞i=1Ai = ∪∞i=1Bi and Bi ∩Bj = ∅ if i 6= j. Thus

P
( ∞⋃

i=1
Ai

)
=
∞∑

i=1
P(Bi) = lim

n→∞

n∑
i=1

P(Bi)

= lim
n→∞

P
(

n⋃
i=1

Bi

)
= lim

n→∞
P(An)
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5. P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2).

Note that A1 ∪A2 = A1 ∪ (A2 ∩Ac
1) and

A2 = (A1 ∩A2) ∪ (A2 ∩Ac
1). Hence,

P(A1 ∪A2) = P(A1) + P(A2 ∩Ac
1)

and
P(A2) = P(A1 ∩A2) + P(A2 ∩Ac

1)

We conclude from the previous equations that
P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2).
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6. Boole’s inequality or union bound. Let be
{A1, A2, . . .} a countable set of events, then

P
(⋃

n

An

)
≤
∑

n

P(An)

For n = 1, we have that P(A1) ≤ P(A1).
Assume that for n,

P
(

n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai)

Since P(A ∪B) = P(A) + P(B)− P(A ∩B) and because the
union operation is associative, we have

P
(

n+1⋃
i=1

Ai

)
= P

(
n⋃

i=1
Ai

)
+ P(An+1)− P

(
n⋃

i=1
Ai ∩An+1

)

21



Introduction Sample Space Probability Measure Equiprobable Spaces Non-Equiprobable Spaces

Thus,

P
(

n+1⋃
i=1

Ai

)
≤ P

(
n⋃

i=1
Ai

)
+ P(An+1)

≤
n∑

i=1
P(Ai) + P(An+1) =

n+1∑
i=1

P(Ai)
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Probability in Finite Spaces

Let be Ω = {ω1, . . . , ωm} a finite set and A = P(Ω) the family
of all the subsets of Ω. Choose m real numbers pi,
i = 1, 2, . . . ,m, such that{

pi ≥ 0, for all i∑m
i=1 pi = 1.

Set P(ωi) = pi (i = 1, 2, . . . ,m), the probability of any event
A ∈ A is defined as

P(A) =
∑

i:ωi∈A

pi
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Equiprobable Spaces, Laplace’s Law

A particular case of interest is when pi = 1/m for all i, thus if A
has n elements

P(A) = n

m

that is,if all the elemental events have the same probability, the
probability of an event A is the ratio between the number of
elements in A and the total number of elements of Ω.

This definition is known as classical probability and was
proposed, among others, by Laplace. In this case, the problem
of calculating the probability of an event is reduced to count
how many results has the experiment and how many of them
belong to the event of interest.
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Examples of Probability in Equiprobable Spaces

1. We choose three numbers at random between 1 and 10, one
at a time and without replacement. What is the
probability of getting 1, 2 and 3, in that order?

In this problem we can describe the sample space as the set
of vectors of three components taking from the integers
between 1 and 10, without repeating any component.
Ω = {(a, b, c), s.t. 1 ≤ a, b, c ≤ 10, a 6= b, a 6= c, b 6= c}.

Because we are choosing at random , all the vectors in the
space have the same probability. The event of interest
correspond to the particular vector (1, 2, 3). Hence, we
have to count how many elements are in Ω to know the
probability of each one of them.
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The first component might be chosen in 10 ways. For the
second we only have 9 ways, because we cannot repeat the
number of the first component. Similarly, we only have 8 ways
to select the third component. Thus, we have 10× 9× 8 = 720
elements in the sample space. Because all have the same
probability, the answer to the problem is 1/720.
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2. If the numbers of the previous example are chosen with
replacement, what is the probability of getting 1, 2 and 3
in that order?

In this case the sample space includes vectors with the
components repeated Ω = {(a, b, c), s.t. 1 ≤ a, b, c ≤ 10}.
For each component there are now 10 possible values, so the
space has 103 = 1000 elements. Since all of them have the
same probability, the answer in this case is 1/1000 = 0.001.
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3. If we drop two dices, what is the probability that they sum
7?

An appropriate sample space for this experiment is the set
of order pairs form with the integers between 1 and 6, with
replacement, Ω = {(a, b), s.t. 1 ≤ a, b ≤ 6}. All the
elementary events of Ω have the same probability: 1/36.
The results whose components sum 7 are:

(1, 6); (2, 5); (3, 4); (4, 3); (5, 2); (6, 1)

Thus the probability that the sum is 7 is

6× 1
36 = 1

6
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Other sample space in this example can be
Ω′ = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The problem with this space
is that their elements are not equiprobable. For example, to
have that the sum is 2, both dices must have 1, which has
probability 1/36, while the probability of the sum being 7 is 1/6.
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4. D’Alembert’s mistake. If we toss a fair coin two
consecutive times, what is the probability that at least one
head appears?

J. le R. D’Alembert reasoning that there are only three
cases in this situation:

(1) head appears the first time,
(2) tail appears first and then head,
(3) tail appears in both tosses.

In the reasoning of D’Alembert as soon as head comes one
time, the game is finished. Therefore, we concluded that
the probability is 2/3.
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However, the first case should be separated into:

(1a) head appears in the forst toss and then tail.
(1b) head appears in both tosses.

Thus, the correct answer is 3/4.
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5. If we toss a coin twice and on of of the times we got tail,
what is the probability that the other toss was head?

For this example, the sample space is
Ω = {TT, TH,HT,HH} and all the results have the same
probability. If we know that one of the tosses was T , we
have three possible results and in two of them the other
toss is H. Thus, the probability is 2/3.

The situation would be different if we know that the first
toss was tail, in this case the second toss has two
possibilities T or H with equal probability, so the answer
would be 1/2.
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6. Suppose that we possess an infinitely large urn and an
infinite collection of balls labeled ball number 1, number 2,
number 3, and so on. Consider an experiment performed as
follows: At 1 minute to 12 p.m., balls numbered 1 through
10 are placed in the urn and a ball is randomly selected
and withdrawn. (Assume that the withdrawal takes no
time.) At 1/2 minute to 12 p.m., balls numbered 11
through 20 are placed in the urn and a ball is randomly
selected and withdrawn. At 1/4 minute to 12 p.m., balls
numbered 21 through 30 are placed in the urn and a ball is
randomly selected and withdrawn, and so on. How many
balls are in the urn at 12 p.m.?
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We shall show that, with probability 1, the urn is empty at 12
p.m. Let us first consider ball number 1. Define En the event
that ball number 1 is still in the urn after the first n
withdrawals have been made.

P(En) = 9× 18× 27× · · · × (9n)
10× 19× 28× · · · × (9n+ 1)

Now, the event that ball number 1 is in the urn at 12 p.m. is
just the event ∩∞n=1En. Because {En}n is a decreasing
succession of events, it follows that

P
( ∞⋂

n=1
En

)
= lim

n→∞
P(En) =

∞∏
n=1

( 9n
9n+ 1

)
Note that

∞∏
n=1

( 9n
9n+ 1

)
=
[ ∞∏

n=1

(9n+ 1
9n

)]−1

=
[ ∞∏

n=1

(
1 + 1

9n

)]−1
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For m ≥ 1,
∞∏

n=1

(
1 + 1

9n

)
>

m∏
n=1

(
1 + 1

9n

)
=
(

1 + 1
9

)(
1 + 1

18

)
· · ·
(

1 + 1
9m

)
>

1
9 + 1

18 + · · ·+ 1
9m

= 1
9

m∑
n=1

1
n

Hence, letting m→∞ and using the fact that
∑∞

n=1 1/n =∞
yields

∞∏
n=1

(
1 + 1

9n

)
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Thus, letting Fi denote the event that ball number i is in the
urn at 12 p.m., we have shown that P(F1) = 0. Similarly, we
can prof that P(Fi) = 0 for all i. Therefore, the probability that
the urn is not empty at 12 p.m., P (

⋃∞
i=1 Fi), satisfies

P
( ∞⋃

i=1
Fi

)
≤
∞∑

i=1
P(Fi) = 0

by Boole’s inequality.
Thus, with probability 1, the urn will be empty at 12 p.m.
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Examples of Probability in Non-Equiprobable Spaces

1. We can consider the case where Ω is an infinite numerable
set:

Ω = {ω1, ω2, . . . , ωm, . . .}, A = P(Ω)

and
P(A) =

∑
i:ωi∈A

pi,

where {
pi ≥ 0, for all i∑∞

i=1 pi = 1.

In this case it is not possible that all the pi are equal, since
in such case they would not satisfy the previous conditions.
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2. We toss a coin until we get head for the first time. The
possible results of this experiment are the natural numbers:
Ω = N. The probability of getting head in the first toss is
1/2. The probability of getting tail and then toss is
(1/2)× (1/2) = 1/4. The probability of getting tail two
times and then head is 1/8 and so on. We see that the
probability of getting head for the first time in the n-th
toss is pn = 1/2n. To see that this assignations defines a
probability we have to check that

∞∑
n=1

pn = 1
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Remember that, if |r| < 1, then

1 + r + r2 + r3 + · · · = 1
1− r

multiplying both sides by r we have

r + r2 + r3 + r4 + · · · = r

1− r
Taking r = 1/2 shows that

∑∞
n=1 pn = 1.

Let A be the event “the first tail is obtain in an even toss”,
hence A = {2, 4, 6, . . .} and

P(A) = 1
4 + 1

16 + 1
64 + · · · = 1

4 +
(1

4

)2
+
(1

4

)3
+ · · · ,

taking r = 1/4 in the previous equation we have

P(A) = 1/4
1− 1/4 = 1

3
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3. Consider once again the example of sampling with
replacement, where

Ω = {GGG,GGD,GDG,DGG,GDD,DGD,DDG,DDD}

and let be A = P(Ω). Suppose that the proportion of
defective products is p = n/N , where n is the number of
defective products in a total of N articles in stock. Hence,
the proportion of good articles is 1− p = q.

Note that
P({DDD}) = p3

P({GGG}) = q3

P({GDD}) = P({DGD}) = P({DDG}) = p2q

P({DGG}) = P({GDG}) = P({GGD}) = q2p
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We verify that P(Ω) = p3 + 3p2q + 3pq2 + q3 = (p+ q)3 = 1.
To find the probability of the event A: “There is at least one
defective product in the sample”, note that A is the complement
of Ac: “There are no defective products in the samples”, so

P(A) = 1− P(Ac) = 1− q3
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4. The probability that a loaded dice shows the number k is
proportional to k. Find the probability of the following
events:
I The result is an even number.
I The result is less than 6.

Let be pk the probability that the dice shows the number k
(k = 1, 2, 3, 4, 5, 6). The problem says that there exists C
such that pk = Ck, since p1 + p2 + · · ·+ p6 = 1. we have
that

C(1 + 2 + · · ·+ 6) = 1⇒ 21C = 1⇒ C = 1
21 ⇒ pk = k

21

44



Introduction Sample Space Probability Measure Equiprobable Spaces Non-Equiprobable Spaces

Let’s calculate the probability of the events of interest.
I The probability of getting an even number is

p2 + p4 + p6 = 12
21 = 4

7
I The probability that the number is less than 6 is

p1 + p2 + p3 + p4 + p5 = 15
21 = 5

7
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4. The birthday’s problem. What is the probability that
in a group of r people at least two have the same birthday?
Let us assume that the year has 365 days. Take the sample
space as the r-tuples with the possible days

Ω = {(d1, d2, . . . , dr), s.t. 1 ≤ di ≤ 365, i = 1, . . . , r}

Furthermore, we can assume that all the r-tuples are
quiprobable.
Le be A the event that between the r people all of them
have a different birthday, that is

A = {(d1, . . . , dr), s.t. 1 ≤ di ≤ 365, all di are distinct}

The question is, what is the probability that A does not
happen, that is P(Ac) = 1− P(A). Since all the elementary
events of Ω are equiprobable,

P(A) = Card(A)
Card(Ω)
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To find Card(Ω), observe that there are N = 365 possibilities
for each birthday, and we select an r-tuple of days with
replacement, thus

Card(Ω) = N r.

On the other hand, the vectors that belong to A does not have
components repeated. Therefore, to choose a vector that
satisfies this condition we have N possible values for the first
component, N − 1 for the second component, N − 2 for the
third, and so on, for the last component we have N − r + 1.
Thus

Card(A) = N(N − 1) · · · (N − r + 1),

and

P(Ac) = 1−N(N − 1) · · · (N − r + 1)
N r

= 1−
(

1− 1
N

)
· · ·
(

1− r − 1
N

)
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Consider the inequality 1− x ≤ e−x, which is valid for all
x ∈ R, hence

P(Ac) ≥ 1− exp
{
− 1
N
− 2
N
− · · · r − 1

N

}
= 1− exp

{
r(r − 1)

2N

}
The next table shows the probability of the event (denoted by
Ar) for some values r and taking N = 365.

r P(Ar)
10 0.117
20 0.411
23 0.507
30 0.706
50 0.97
57 0.99
100 0.9999997
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