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:

Because

%)

is a (multivariate) normal variable and Cov(u,x) = 0, it implies
that u and x are independent, and hence u|x has the same
distribution than u, that is

ulx ~ N (Ny = ZyxZ;lex» Ly — Zy:rz‘;mlzxy>
That is,
= Zyxz‘;xlx|x ~N (My - ZyxZ;g}Hxv Lyy — Zywz‘;xlzxy)
And from here, we conclude

yx~N (My + 2o Ty (X — i), gy — Zywz:;:gzxy)



Normal Distribution Linear Regre

ssion Projections Linear Regression (2) Distributional Properties

Define
Hylz = Hy + Zya:z;zl(x — z)
= [:“y ED XY Y Nx} + [Zyxz';xl } X
= Bo + fix
and
z“ylz =2y — Zy:cZ;ml Ly

Remember that

Ty =By [(y —m)(y —m)7] (resp. Ta)

and

T = M8y o [(y — py ) (x — px)T] (similarly X,y = ng)
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Assume for now that x =2 € R and y = y € R, and that we
count with a sample D,, = ((z1,41),- -+, (Tn,yn)) from
independent and identically distributed random variables with
the same distribution than the generic vector (z,y).
Thus (intuitively) good estimators of the previous quantities
would be given by

> Ty =Sy = & i1 (yi — §)? (resp. Sux)

> Zy:p = Syw = %Z?:l(yl = g)($l = j) = Sﬂ?y

> fiyp = Jlz = o + P17 where

Bo =1 — Sy &

T~
A -1
/81 — Syzsxx
S A2 __ -1
= Zy|z o~ = Syy - Sywsu Sa?y
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: :

Let be §; = §s|zi = o + fizi, i = 1,...,n, we define the Sum
of Squared Estimate Errors (SSE) (Suma de Cuadrados del
Error (SCE), in Spanish) also known as Sum of Squared
Residuals (SSR) or Residual Sum of Squares (RSS)

Definition 1 Sum of Squared Estimate Errors (SSE)]

Remember that §; = § + SyuS,. (; — ), thus applying simple
algebra we get
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Mathematical modeling refers to the construction of mathemati-
cal expressions that describes the behavior of a variable of interest
Y. Frequently we want to add to the model some variables (fea-
tures) X, which give information about the variable of interest
Y denoted as response.

11



Linear Regression

In regression analysis one considers (X,Y) as random vector,
where X is RP-valued (X € X C RP) and Y is R-valued (Y €
Y C R). We are interested on how the variable Y depends on
the value of the observation vector X. This means that we want
to find a function f : X — Y, such that f(X) is a good approx-
imation of Y, that is, f(X) should be close to Y in some sense,
which is equivalent to making |f(X) — Y| “small”. Since X and
Y are random vectors, |f(X) — Y] is random as well, therefore it
is not clear what “small |f(X) —Y|” means.
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We can resolve this problem by introducing the so-called Lo risk
or mean squared error of f,

Exy [f(X)-Y]?,

and requiring it to be as small as possible. So we are interested
in a (measurable) function m : X — Y such that

m = argmin Ex y [f(X) — Y]?
[:X—=Y

Such function that minimizes the mean squared error is given
by the regression function

m(X) = E[Y|X]
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Proof:
For any arbitrary function f : X — ),

Exy [f(X) - Y]’ = Exy [f(X) - m(X) + m(X) - Y]’
=Exy [f(X)— m(X)]2 +Exy [m(X)— Y]Q,

where we have used

=0
14
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|

Thus,
argmin Ex y [f(X) — Y]?
f:X=Y

— argmin Ex y [f(X) —m(X)]* + Exy [m(X) — Y]?
f:X=Y

— argmin Ey [f(X) — m(X)]?
f:X=Y

Note that Ex [f(X) —m(X)]?, called the Ly error of f is
nonnegative and is zero if f(X) = m(X). Therefore

m = argmin Ex y [f(X) — Y]?
f:X=Y
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Linear Regression

For practical problems, the distribution of (X,Y) is unknown
and hence, the regression function is unknown as well. How-
ever, in our framework, we have access to a training set D,, =
(X;,Y:)i=1,..n where the collected data has the same distribution
than (X,Y) and are considered independent. The goal is to use
the data D,, to construct a learning model, also called learner
or predictor, m, : X — ) which estimates the function m, and
enables us to predict the outcome for new unseen objects.
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Thus, instead of minimizing the Lo risk we minimize the
empirical Lo risk
2 1§ 2
Ep, [£(X) - YP = - 3" [£(X) - i
i=1
Note that minimizing the above expression over all the functions
f: X — Y is not well-define, since every function which takes
the value Y; for every X; would have zero empirical risk.

X 1

1picture taken from Wikipedia:
https://en.wikipedia.org/wiki/Regularization_(mathematics)
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Linear Regression

We can resolve this problem restricting the search of the
function that minimizes the empirical risk into a pre-defined set
of functions F. Moreover, the parametric estimation uses a
model belonging to a set of functions Fg determined by a finite
number of parameters @, then the estimation is made through
the inference of this set of parameters that minimize the
empirical risk,

My = my(+,0) = argmin Ep, [fp(X) — Y]?,
fo€Fo

where

0 = argmin Ep,_ [fy(X) — Y]?
0c®
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For example let be Fg = {f: X =Y : f(X) = XT3, B € RP}
(©@={8: BeRP},

mn(X) = XTh = arg min Ep, [fo(X) — Y]2
fo€Fe

where
B = argminEp, [XT 5 —Y]?
BERP

n
=argmin Y _[X] 8 —¥;]?
PER? i1

This is known as Ordinary Leas Squares (OLS).
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Normal Distribution Linear Regression Projections Linea
X7 Y
Letbe X =] : | and Y = , X is known as the design
xr Y,
matrix while Y is known as the response vector. Then
n
> IXi8-Yi)?
i=1
can be written as
n
Y X B =Y = [XB - Y] [X5 - Y]
i=1

= ["X" - YT][XB-Y]
=8TXT"X3 - 28"XTY +YTY,

B can be obtained from the right-hand side of the above

expression.
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| |

B satisfies

ﬁ(ﬁTxT)w —28TXTY +YTY)| =0
op 3

That is,

2XTXp-2XTy =0
= XT(Y-XB)=0 (1)

Equation (1) is known as the normal equations. It is easy to
see that 8 = (XTX)"1XY.
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Hence, under this model, the best prediction Y for the vector of
response Y is given by

Y: xT
Y = = B
Y, Xy

= X(X"X)"'xTYy

Let be P = X(XTX) !XT so Y = PY.
We will see that Y is the orthogonal projection of Y over the
span of the the columns of X (What does this mean?).
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I I
:

Let X = [X<1>, - ,X(fﬂ be an n x p matrix, let W = Col(X),

and let Y be a vector in R”.

Let Y = Yy 4+ Yy be the orthogonal decomposition with
respect to W. By definition Yy lies in W = Col(X) so there is
a vector § € RP with Yy = X3, that is

Yw =Xp5
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[

Normal Distribution Linear Regression Projections Linea
_

Choose any such vector 5. We know that Y — Yy =Y — X3
lies in W+, which is equal to Null(X”). We thus have

0=X"(Y-Xj3)=X"Y - XTX}3

and so
XX =Xx"yY

Hence,
f=XTX)"'xTy

25
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Remember that Yy = X8, so it can be written as

Yy = X(XTX)"1XTy
=PY
where P = X(XTX)~1XT.

Thus, P is a projection matrix over the columns of X. Actually
is the orthogonal projection onto Col(X).
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Properties of a Projection Matrix

» If P is a projection matrix in a space W, then P? = P.
Remember that a vector that has been projected onto W
belongs to that space, thus projecting again over W would
led the same result.

» If P = P7 then P is the creates orthogonal projections
onto W.

Suppose that P satisfies both conditions, and consider its SVD
decomposition, so

P=Usv”

where U and V are orthogonal matrices. (An orthogonal matrix

satisfies: QTQ = QQT =1I).

27
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Actually, U and V are rotation or reflection matrices. So, we
might think as if the projection is “computed” by S.
Because P2 =P,

usvTtusvt =usvT

which implies SVIUS = S.

Using the fact that P = P, we get that USVT = VSUT. So
Uu=V.

Therefore, it is satisfied

UstuT =usu”

Since

Then ), € {0,1}

28
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Those places where \; = 1 represent the coordinates (in the
rotated space) where the projection is perform, the basis of W.
On the other hand, the places where \; = 0 would lead to a
basis for W+.
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Example 1

Consider the matrix

1/2
e[

which can be written as

p_|Yva Yvi|l
- =Yv2 1/vz| |0

0
0

_1/2]

1/2

1/v2
1/v2

1/v2

—1/\/51
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p | Vva Yvi|[1 o] Yva —yv
~|=Yvz vz |0 Of | Y/vz Y2

b [ 1/va wé] l 1 o] [1/\/5 —1/\/51

—Yva2 Y/v2| |0 0] |Yva Yva
v vl v —vve
T |-vva a0 o
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p_| Y2 Yva|Yve SYval Y2 /e
S| -Yv2 Yva || o 0 | [-V2 V2

AN
NS

. /9 —1/2
P 4
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I I

Example 2

2
=9
It can be shown that

Let X = [X(V] =

_ T~xy—1xT _ | /2 =1/2
P=X(X"X)"'X _l—1/2 1/2]

so P is the orthogonal projection onto Span (X(l))
Now, consider the matrix

, [1 0

note that P> = P/, hence P’ is a projection matrix.
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| |

P — [ 1 0 ] P’ is an oblique projection
-1 0 onto Span (X(l)).
The SVD decomposition
‘ of P’ is

pr— |~z V2| V2 0] -1 0
| Y2 12 0 0[O0 O
—_—

U’ S’ VT
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pr |~Y2 Y2| [v2 0] | -1 0
/2 /2|0 0|| 0O O
(—l—)
4 pr_ [vE Y| [ V2 0] ]-1 0
vz Yva2| | O 0[]0 O
— — -
|- vE Y| |-v2 0
Sl Yva YVl | 0 0
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I

P = l —z 1/\/51 [_\/i 01 Let be Z = [(1)] and
0

/22 0
— |10 Trp\—1rsT 10
-1 0 Pz=Z(Z"7)"Z" =
00
/s Moreover, let B = PzX

be the orthogonal projec-
tion of X onto Col(Z),

N =]

36



Projections

Simple calculations show P’ = X(BTX)~!BT.

Define Yy = (X(BTX)~!BT)Y, Yy is an oblique projection
over Col(X).

This method is called Two-Stage Least Squares (2SLS).
In the first stage we get the orthogonal projection of X onto
Col(Z), where Z is called instrumental variables.
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:

Consider the model
Y,=XIB+e,i=1,...,n
where E[g;|X;] =0, Vi=1,...,n.

So E[Y;|X;] = X! B3, and that &; = Y; — X1 3. g5, i=1,...,n
are called the errors of the model.

Denote by € the vector with these errors,

€1

En
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Linear Regression (2)

Consider f = PY, where P = X(X"X)~!1X”
Let be Y = X8 (V; = X7B). Then Y; —Y;, i =1...,n, called
the residuals of the mcldel, estimate the errors

gi,t1=1,...,nand Y —Y estimates &.

Denote by e =Y — Y the vector of residuals, note that
e=(I-P)Y.

Moreover, it is easy to show that I — P is the projection matrix
onto Col(X)+, hence XTe =0

40
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: :

Writing X = [X(l)7 o ,X(p)},

XTe = : = :
X P)T g n Xi(p) e

We can conclude that > ;" Xi(h)e,- =0, forall h e {1,...,p}.
For example, if
1 I

X =

1 x,

We have proved that > ;e; =0 and > 7' ; z5¢; =0

41
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: :

Let be y ~ N (u,0%T), then
1. Ay L By < ABT =0.
2. Ay L yT'Cy <= AC = 0, where C is non-negative definite.

3. y'Cy L y" Dy <= CD = 0, where C and D are
non-negative definite.

Let be y ~ N (1, %), then y” Ay ~ X’%«\ if and only if AY is
symmetric and idempotent of range k, where A\ = %MTAM.
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(2) Distributional Properties

g
[

Normal Distribution Linear Regression Projections Linear R

Assume Y|X ~ N(Xf,0%I), which is equivalent to the
assumption &;|X; %i./\f((), o?).
Consider the least squares estimate 3 = (X7X)~!X”Y, then
>
BIX ~ N (8,0*(XTX) ™)
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Remember that SSE = (Y — S?)T(Y — SA() =
(Y — PY)7(Y = PY) = Y/(I— P)Y, then

>
E I-P
SSE_yr1-Py,
o o
and o
= 1X ~ Xap
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Normal Distribution Linear Regression Projections Linear Regr 2
D by 62 the unbiased esti f = 95E '¢)
enote by 6 the unbiased estimate of o, 6% = 2= b then
>
B L6%X

To see this, remember that 8 = (X7X)~'X”Y and
62 = ni_pYT (I-P)Y. Hence 3 and 62 are independent if and
only if
1
——(X™X)"'X"(1-P)=0
o (XTX)XT(1- P)
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As a consequence of the previous results, we have that

> 2
n—p)o
>
T 7
v b-a b X ~Ni(0,1), VYa€eRP,a+0
\/UQaT(XTX)_la
| 2

aTB — B

\/62aT (XTX)~La

X ~tp—p, VaeRPa#0
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g T
& XX
B8 XX B px~

> T

X X

B=B)" 5 (B-B)X~
> Let be K a ¢ X p matrix of range ¢,
-1
R S
(Kﬁ_Kﬁ) 62 (K/B_KB)’XNFn —p
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Confidence Intervals

» A (1—a) x 100% confidence interval for a’ 3 is given by

a'B+ th—p.a/2 \/62aT(XTX)_1a

» A (1— ) x100% confidence interval for f3; is given by

Bj £ tnpas2\/62(XTX); ]

where 8 = [B1,..., 8T
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: :

Confidence Regions

> A (1—a)x100% confidence region for S is given by

XTX }

{o: -pr X -p <P,
» Scheffé Intervals. A (1 —«) x 100% confidence region
for K is given by

[K(XTX);IKT} e

n—p,l—a

B (KB-Kp)" -
qo

where K is a g X p matrix of range q.
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Prediction Interval

Remember that Y = XT3 + ¢,
Y|X ~N(XTB,0?)
and Y = XTg,
YV(X,X) ~N(X78,6XT(XTX)"1X)
Because Y L Y|X, then

Y —Y|(X,X) ~N(0,02(1 + XT(XTX)"1X))
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Therefore,

Yy -V
V/02(1+ X7 (XTX) 1 X)

|(X?X) ~ ln—p

> A (1—a) x100% prediction interval for Y is given by

XTB £ty paszy/62(1+ XT(XTX)71X)
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I I

Hypothesis Test
» Reject H : fj = m if

B —m| b1 oy
XTX): 1 ’
( JJ

> Reject H : aTBj = m if

ja”B — m|

/62T (XTX)La

> tn—p,l—a/Q

> Reject H : K = m if

K" T[K(XTX)_IKT]_ KA q
( ﬁ_m) q52 ( B_m)>Fn —p,1
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