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Correlated Features

The interpretation of the linear regression model depends on
the assumption that the features are not strongly correlated.
When this assumption is violated we might face numerical and
statistical problems. A numerical problem is when the matrix
XT X is singular or nearly singular and the statistical problem
arises from getting parameters’ estimators with a lot of
uncertainty, making them unreliable.
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Ridge Estimator

One way to solve the presence of colinearity is to detect a set of
correlated variables and eliminate them from the analysis. If we
want to keep all the features, one option is ridge regression.
Assume the usual model

Y = Xβ + ε with ε ∼ N (0, σ2I)

The ridge estimator is obtained solving

(XT X + λI)β = XT Y

where λ ≥ 0 is the ridge parameter. Thus

β̂R = (XT X + λI)−1XT Y
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Equivalent Expressions

Since β̂ = (XT X)−1XT Y, then XT Y = (XT X)β̂ and the ridge
estimator might be written as

β̂R = (XT X + λI)−1(XT X)β̂ ≡ Zλβ̂

Note that

Zλ(I + λ(XT X)−1) = (XT X + λI)−1(XT X)(I + λ(XT X)−1)
= (XT X + λI)−1(XT X + λI)
= I,

hence
Zλ =

(
I + λ(XT X)−1

)−1
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On the other hand, note that

(XT X + λI)
(
I − λ(XT X + λI)−1

)
= XT X + λI − λ(XT X + λI)(XT X + λI)−1

= XT X + λI − λI

= XT X,

while

(XT X + λI)Zλ = (XT X + λI)(XT X + λI)−1(XT X)
= XT X,

hence
Zλ =

(
I − λ(XT X + λI)−1

)
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▶ β̂R = Zλβ̂.
▶ Zλ = (XT X + λI)−1XT X.

▶ Zλ =
(
I + λ(XT X)−1

)−1
⇒ if λ = 0, Zλ = I and β̂R = β̂.

▶ Zλ =
(
I − λ(XT X + λI)−1

)
⇒ limλ→∞ Zλ = 0 and

limλ→∞ β̂R = 0.
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Estimation of the Response
Let X = UDV T the SVD decomposition of X,
D = diag(d1, . . . , dp) and assume d1 ≥ · · · ≥ dp. Consider the
prediction of the response vector

ŶR = Xβ̂R

= X(XT X + λI)−1XT Y

= UDV T

(
V D���*I

UT UDV T + λV V T

)−1

V DUT Y

= UDV T (V T )−1
(
D2 + λI

)−1
V −1V DUT Y

= UD(D2 + λI)−1DUT Y
≡ SY
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Degrees of Freedom

The trace of S is called the effective number of parameters or
the degrees of freedom of the estimator.

tr(S) = tr(UD(D2 + λI)−1DUT )
= tr(D(D2 + λI)−1D)

=
p∑

j=1

d2
j

d2
j + λ

≡ df(β̂R).

Note that, if λ = 0, df(β̂R) = p.

Trace of ridge
The trace of ridge is a graph of β̂R against df(β̂R) or λ.
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Bias of the ridge estimator

Since β̂R = Zλβ̂, then E[β̂R] = Zλβ and

bias(β̂R) = (Zλ − I)β
= −λ(XT X + λI)−1β,

thus
bias2(β̂R) = βT λ2(XT X + λI)−2β

Note that if λ = 0, bias2(β̂R) = 0
and limλ→∞ bias2(β̂R) = βT β = ∥β∥2

2.
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Variance of the ridge estimator
On the other, using the expression

β̂R = (XT X + λI)−1XT Y,

we obtain
V(β̂R) = (XT X + λI)−1XTV(Y)X(XT X + λI)−1

= σ2(XT X + λI)−1XT X(XT X)−1XT X(XT X + λI)−1

= σ2Zλ(XT X)−1ZT
λ ,

so
tr(V(β̂R)) = σ2tr

(
(XT X)(XT X + λI)−2

)
= σ2

p∑
j=1

d2
j

(d2
j + λ)2

Note that if λ = 0, tr(V(β̂R)) = σ2∑p
j=1

1
d2

j
and

limλ→∞ tr(V(β̂R)) = 0. 10



MSE of the ridge estimator

Let y be a random vector with mean µ and variance Σ, then

E[yT Ay] = µT Aµ + tr(AΣ).

Using this formula, we can calculate the MSE of the ridge
estimator as

MSE(β̂R) = E
[(

β̂R − β
)T (

β̂R − β
)]

= tr
(
V
(
β̂R − β

))
+ E

[(
β̂R − β

)]T
E
[(

β̂R − β
)]

= σ2
p∑

j=1

d2
j

(d2
j + λ)2 + βT λ2(XT X + λI)−2β
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It has been proved1 that, if βT β is bounded, exists λ > 0 such
that

MSE(β̂R) < MSE(β̂),

later, it was proved2 that

MSE(β̂R) < MSE(β̂)

for any λ ≤ 2 σ2

∥β∥2
2
.

In practice, however, it is common to tune up λ through cross
validation.
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