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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Let be (
y
x

)
∼ N

([
µy

µx

]
,

[
Σyy Σyx

Σxy Σxx

])
Then

y|x ∼ N
(
µy + ΣyxΣ−1

xx (x − µx), Σyy − ΣyxΣ−1
xx Σxy

)
Proof:
Consider the matrix

A =
[

I −ΣyxΣ−1
xx

0 I

]

and let be µ =
[
µy

µx

]
and Σ =

[
Σyy Σyx

Σxy Σxx

]
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Thus, A

(
y
x

)
∼ N

(
Aµ, AΣAT

)
. Now, let us compute this

expressions

A

(
y
x

)
=
(

y − ΣyxΣ−1
xx x

x

)
≡
(

u
x

)

Aµ =
(

µy − ΣyxΣ−1
xx µx

µx

)

AΣAT =
(

Σyy − ΣyxΣ−1
xx Σxy Σyx − ΣyxΣ−1

xx Σxx

Σxy Σxx

)
AT

=
(

Σyy − ΣyxΣ−1
xx Σxy 0

Σxy Σxx

)(
I 0

−Σ−1
xx Σxy I

)

=
(

Σyy − ΣyxΣ−1
xx Σxy 0

0 Σxx

)
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Because (
u
x

)
is a (multivariate) normal variable and Cov(u, x) = 0, it implies
that u and x are independent, and hence u|x has the same
distribution than u, that is

u|x ∼ N
(
µy − ΣyxΣ−1

xx µx, Σyy − ΣyxΣ−1
xx Σxy

)
That is,

y − ΣyxΣ−1
xx x|x ∼ N

(
µy − ΣyxΣ−1

xx µx, Σyy − ΣyxΣ−1
xx Σxy

)
And from here, we conclude

y|x ∼ N
(
µy + ΣyxΣ−1

xx (x − µx), Σyy − ΣyxΣ−1
xx Σxy

)
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Define

µy|x = µy + ΣyxΣ−1
xx (x − µx)

=
[
µy − ΣyxΣ−1

xx µx

]
+
[
ΣyxΣ−1

xx

]
x

≡ β0 + β1x

and
Σy|x = Σyy − ΣyxΣ−1

xx Σxy

Remember that

Σyy = Ey
[
(y − µy)(y − µy)T

]
(resp. Σxx)

and

Σyx = Ey,x
[
(y − µy)(x − µx)T

]
(similarly Σxy = ΣT

yx)
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Assume for now that x ≡ x ∈ R and y ≡ y ∈ R, and that we
count with a sample Dn = ((x1, y1), . . . , (xn, yn)) from
independent and identically distributed random variables with
the same distribution than the generic vector (x, y).
Thus (intuitively) good estimators of the previous quantities
would be given by
▶ Σ̂yy ≡ Syy = 1

n

∑n
i=1(yi − ȳ)2 (resp. Sxx)

▶ Σ̂yx ≡ Syx = 1
n

∑n
i=1(yi − ȳ)(xi − x̄) = Sxy

▶ µ̂y|x ≡ ŷ|x = β̂0 + β̂1x where

β̂0 = ȳ − SyxS−1
xx x̄

β̂1 = SyxS−1
xx

▶ Σ̂y|x ≡ σ̂2 = Syy − SyxS−1
xx Sxy

7



Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Let be ŷi = ŷi|xi = β̂0 + β̂1xi, i = 1, . . . , n, we define the Sum of
Squared Residuals (SSR) or Residual Sum of Squares (RSS)
also known as Sum of Squared Estimate Errors (SSE).

SSR =
n∑

i=1
(yi − ŷi)2

Remember that ŷi = ȳ + SyxS−1
xx (xi − x̄), thus applying simple

algebra we get
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

SSR =
n∑

i=1
(yi − ŷi)2

=
n∑

i=1
(yi − ȳ)2 + SyxS−1

xx

(
n∑

i=1
(xi − x̄)2

)
S−1

xx Sxy

− 2
n∑

i=1
(yi − ȳ)SyxS−1

xx (xi − x̄)

1
n

SSR = Syy + Syx�
��S−1

xx�
�SxxS−1

xx Sxy − 2SyxS−1
xx Sxy

= Syy − SyxS−1
xx Sxy
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Mathematical modeling refers to the construction of mathemati-
cal expressions that describes the behavior of a variable of interest
Y . Frequently we want to add to the model some variables (fea-
tures) X, which give information about the variable of interest
Y denoted as response.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

In regression analysis one considers (X, Y ) as random vector,
where X is Rp-valued (X ∈ X ⊆ Rp) and Y is R-valued (Y ∈ Y ⊂
R). We are interested on how the variable Y depends on the value
of the observation vector X. This means that we want to find
a function f : X → Y, such that f(X) is a good approximation
of Y , that is, f(X) should be close to Y in some sense, which
is equivalent to making |f(X) − Y | “small”. Since X and Y are
random vectors, |f(X) − Y | is random as well, therefore it is not
clear what “small |f(X) − Y |” means.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

We can resolve this problem by introducing the so-called L2 risk
or mean squared error of f ,

EX,Y [f(X) − Y ]2 ,

and requiring it to be as small as possible. So we are interested
in a (measurable) function m : X → Y such that

m = arg min
f :X →Y

EX,Y [f(X) − Y ]2

Such function that minimizes the mean squared error is given
by the regression function

m(X) = E[Y |X]
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Proof:
For any arbitrary function f : X → Y,

EX,Y [f(X) − Y ]2 = EX,Y [f(X) − m(X) + m(X) − Y ]2

= EX,Y [f(X) − m(X)]2 + EX,Y [m(X) − Y ]2 ,

where we have used

EX,Y [(f(X) − m(X))(m(X) − Y )]

= EX

{
EY |X [(f(X) − m(X))(m(X) − Y )]

}
= EX

{
(f(X) − m(X))EY |X [(m(X) − Y )]

}
= EX {(f(X) − m(X))(m(X) − m(X))}
= 0
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Thus,

arg min
f :X →Y

EX,Y [f(X) − Y ]2

= arg min
f :X →Y

EX,Y [f(X) − m(X)]2 + EX,Y [m(X) − Y ]2

= arg min
f :X →Y

EX [f(X) − m(X)]2

Note that EX [f(X) − m(X)]2, called the L2 error of f is
nonnegative and is zero if f(X) = m(X). Therefore

m = arg min
f :X →Y

EX,Y [f(X) − Y ]2
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

For practical problems, the distribution of (X, Y ) is unknown
and hence, the regression function is unknown as well. How-
ever, in our framework, we have access to a training set Dn =
(Xi, Yi)i=1,...,n where the collected data has the same distribution
than (X, Y ) and are considered independent. The goal is to use
the data Dn to construct a learning model, also called learner
or predictor, mn : X → Y which estimates the function m, and
enables us to predict the outcome for new unseen objects.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Thus, instead of minimizing the L2 risk we minimize the
empirical L2 risk

EDn [f(X) − Y ]2 = 1
n

n∑
i=1

[f(Xi) − Yi]2

Note that minimizing the above expression over all the functions
f : X → Y is not well-defined, since every function which takes
the value Yi for every Xi would have zero empirical risk.

1
1picture taken from Wikipedia:

https://en.wikipedia.org/wiki/Regularization (mathematics)
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

We can resolve this problem restricting the search of the
function that minimizes the empirical risk into a pre-defined set
of functions F . Moreover, the parametric estimation uses a
model belonging to a set of functions FΘ determined by a finite
number of parameters Θ, then the estimation is made through
the inference of this set of parameters that minimize the
empirical risk,

mn = mn(·, θ̂) = arg min
fθ∈FΘ

EDn [fθ(X) − Y ]2,

where
θ̂ = arg min

θ∈Θ
EDn [fθ(X) − Y ]2

18



Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

For example let be FΘ = {f : X → Y : f(X) = XT β, β ∈ Rp}
(Θ = {β : β ∈ Rp}),

mn(X) = XT β̂ = arg min
fθ∈FΘ

EDn [fθ(X) − Y ]2

where

β̂ = arg min
β∈Rp

EDn [XT β − Y ]2

= arg min
β∈Rp

n∑
i=1

[XT
i β − Yi]2

This is known as Ordinary Leas Squares (OLS).
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Let be X =

XT
1
...

XT
n

 and Y =

Y1
...

Yn

, X is known as the design

matrix while Y is known as the response vector. Then
n∑

i=1
[XT

i β − Yi]2

can be written as
n∑

i=1
[XT

i β − Yi]2 = [Xβ − Y]T [Xβ − Y]

= [βT XT − YT ][Xβ − Y]
= βT XT Xβ − 2βT XT Y + YT Y,

β̂ can be obtained from the right-hand side of the above
expression.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

β̂ satisfies

∂

∂β
(βT XT Xβ − 2βT XT Y + YT Y)

∣∣∣∣
β̂

= 0

That is,

2XT Xβ̂ − 2XT Y = 0
⇔ XT (Y − Xβ̂) = 0 (1)

Equation (1) is known as the normal equations. It is easy to
see that β̂ = (XT X)−1XY.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Hence, under this model, the best prediction Ŷ for the vector of
response Y is given by

Ŷ =


Ŷ1
...

Ŷn

 =

XT
1
...

XT
n

 β̂

= X(XT X)−1XT Y

Let be P = X(XT X)−1XT , so Ŷ = PY.
We will see that Ŷ is the orthogonal projection of Y over the
span of the the columns of X (What does this mean?).
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Let X =
[
X(1), . . . , X(p)

]
be an n × p matrix, let W = Col(X),

and let Y be a vector in Rn.
Let Y = YW + YW ⊥ be the orthogonal decomposition with
respect to W . By definition YW lies in W = Col(X) so there is
a vector β̂ ∈ Rp with YW = Xβ, that is

YW = Xβ̂

=
[
X(1), . . . , X(p)

] 
β̂1
...

β̂p


= β̂1X(1) + · · · + β̂pX(p)
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Choose any such vector β̂. We know that Y − YW = Y − Xβ̂
lies in W ⊥, which is equal to Null(XT ). We thus have

0 = XT (Y − Xβ̂) = XT Y − XT Xβ̂

and so
XT Xβ̂ = XT Y

Hence,
β̂ = (XT X)−1XT Y

25



Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Remember that YW = Xβ̂, so it can be written as

YW = X(XT X)−1XT Y
= PY

where P = X(XT X)−1XT .
Thus, P is a projection matrix over the columns of X. Actually
is the orthogonal projection onto Col(X).
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Properties of a Projection Matrix

▶ If P is a projection matrix in a space W , then P2 = P.
Remember that a vector that has been projected onto W
belongs to that space, thus projecting again over W would
led the same result.

▶ If P = PT , then P is the creates orthogonal projections
onto W .

Suppose that P satisfies both conditions, and consider its SVD
decomposition, so

P = USV T

where U and V are orthogonal matrices. (An orthogonal matrix
satisfies: QT Q = QQT = I).
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Actually, U and V are rotation or reflection matrices. So, we
might think as if the projection is “computed” by S.
Because P2 = P,

USV T USV T = USV T

which implies SV T US = S.
Using the fact that P = PT , we get that USV T = V SUT . So
U = V .
Therefore, it is satisfied

US2UT = USUT

Since

S =

λ1
. . .

λp


Then λi ∈ {0, 1}
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Those places where λi = 1 represent the coordinates (in the
rotated space) where the projection is perform, the basis of W .
On the other hand, the places where λi = 0 would lead to a
basis for W ⊥.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Example 1

Consider the matrix

P =
[

1/2 −1/2
−1/2 1/2

]

which can be written as

P =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

] [
1 0
0 0

] [
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

]
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

P =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

] [
1 0
0 0

] [
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

]

P =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

] [
1 0
0 0

] [
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

]

=
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

] [
1/

√
2 −1/

√
2

0 0

]
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

P =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

] [
1/

√
2 −1/

√
2

0 0

]
=
[

1/2 −1/2
−1/2 1/2

]

P =
[

1/2 −1/2
−1/2 1/2

]
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Example 2

Let X = [X(1)] =
[

2
−2

]
It can be shown that

P = X(XT X)−1XT =
[

1/2 −1/2
−1/2 1/2

]

so P is the orthogonal projection onto Span
(
X(1)

)
Now, consider the matrix

P′ =
[

1 0
−1 0

]

note that P′2 = P′, hence P′ is a projection matrix.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

P′ =
[

1 0
−1 0

]

.

P′ is an oblique projection
onto Span

(
X(1)

)
.

The SVD decomposition
of P′ is

P′ =
[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

]
︸ ︷︷ ︸

U ′

[√
2 0

0 0

]
︸ ︷︷ ︸

S′

[
−1 0
0 1

]
︸ ︷︷ ︸

V ′T
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

P′ =
[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

] [√
2 0

0 0

] [
−1 0
0 1

]

P′ =
[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

] [ √
2 0

0 0

] [
−1 0
0 1

]

=
[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

] [
−

√
2 0

0 0

]

.
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P′ =
[

−1/
√

2 1/
√

2
1/

√
2 1/

√
2

] [
−

√
2 0

0 0

]

=
[

1 0
−1 0

]

..

Let be Z =
[
1
0

]
and

PZ = Z(ZT Z)−1ZT =
[
1 0
0 0

]

Moreover, let B = PZX
be the orthogonal projec-
tion of X onto Col(Z),

B =
[
2
0

]
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Simple calculations show P′ = X(BT X)−1BT .
Define YIV = (X(BT X)−1BT )Y, YIV is an oblique projection
over Col(X).
This method is called Two-Stage Least Squares (2SLS).
In the first stage we get the orthogonal projection of X onto
Col(Z), where Z is called instrumental variables.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Consider the model

Yi = XT
i β + εi, i = 1, . . . , n

where E[εi|Xi] = 0, ∀i = 1, . . . , n.

So E[Yi|Xi] = XT
i β, and that εi = Yi − XT

i β. εi, i = 1, . . . , n
are called the errors of the model.

Denote by ε the vector with these errors,

ε =

ε1
...

εn


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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Consider Ŷ = PY, where P = X(XT X)−1XT

Let be Ŷ = Xβ̂ (Ŷi = XT
i β̂). Then Yi − Ŷi, i = 1 . . . , n, called

the residuals of the model, estimate the errors
εi, i = 1, . . . , n and Y − Ŷ estimates ε.

Denote by e = Y − Ŷ the vector of residuals, note that
e = (I − P)Y.

Moreover, it is easy to show that I − P is the projection matrix
onto Col(X)⊥, hence XT e = 0
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Writing X =
[
X(1), . . . , X(p)

]
,

XT e =


X(1)T e

...
X(p)T e

 =


∑n

i=1 X
(1)
i ei

...∑n
i=1 X

(p)
i ei


We can conclude that

∑n
i=1 X

(h)
i ei = 0, for all h ∈ {1, . . . , p}.

For example, if

X =

1 x1
...

...
1 xn


We have proved that

∑n
i=1 ei = 0 and

∑n
i=1 xiei = 0
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Let be y ∼ N (µ, σ2I), then
1. Ay ⊥ By ⇐⇒ ABT = 0.
2. Ay ⊥ yT Cy ⇐⇒ AC = 0, where C is non-negative definite.
3. yT Cy ⊥ yT Dy ⇐⇒ CD = 0, where C and D are

non-negative definite.

Let be y ∼ N (µ, Σ), then yT Ay ∼ χ2
k,λ if and only if AΣ is

symmetric and idempotent of range k, where λ = 1
2µT Aµ.
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Assume Y|X ∼ N (Xβ, σ2I), which is equivalent to the
assumption εi|Xi

iid∼ N (0, σ2).
Consider the least squares estimate β̂ = (XT X)−1XT Y, then
▶

β̂|X ∼ N (β, σ2(XT X)−1)
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Remember that
SSR = (Y−Ŷ)T (Y−Ŷ) = (Y−PY)T (Y−PY) = YT (I−P)Y,
then
▶

SSR

σ2 = YT I − P
σ2 Y

and
SSR

σ2 |X ∼ χ2
n−p
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Denote by σ̂2 the unbiased estimate of σ, σ̂2 = SSR
n−p , then

▶
β̂ ⊥ σ̂2|X

To see this, remember that β̂ = (XT X)−1XT Y and
σ̂2 = 1

n−pYT (I − P)Y. Hence β̂ and σ̂2 are independent if and
only if

1
n − p

(XT X)−1XT (I − P) = 0
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

As a consequence of the previous results, we have that
▶

(n − p)σ̂2

σ2 |X ∼ χ2
n−p

▶
aT β̂ − aT β√

σ2aT (XT X)−1a
|X ∼ N1(0, 1), ∀a ∈ Rp, a ̸= 0

▶
aT β̂ − aT β√

σ̂2aT (XT X)−1a
|X ∼ tn−p, ∀a ∈ Rp, a ̸= 0
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▶

(β̂ − β)T XT X
σ2 (β̂ − β)|X ∼ χ2

p

▶

(β̂ − β)T XT X
pσ̂2 (β̂ − β)|X ∼ F p

n−p

▶ Let be K a q × p matrix of range q,

(Kβ̂ − Kβ)T

[
K(XT X)−1KT

]−1

qσ̂2 (Kβ̂ − Kβ)|X ∼ F q
n−p
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Confidence Intervals

▶ A (1 − α) × 100% confidence interval for aT β is given by

aT β̂ ± tn−p,α/2

√
σ̂2aT (XT X)−1a

▶ A (1 − α) × 100% confidence interval for βj is given by

β̂j ± tn−p,α/2

√
σ̂2(XT X)−1

j,j

where β = [β1, . . . , βp]T
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Confidence Regions

▶ A (1 − α) × 100% confidence region for β is given by{
β : (β̂ − β)T XT X

pσ̂2 (β̂ − β) ≤ F p
n−p,1−α

}

▶ Scheffé Intervals. A (1 − α) × 100% confidence region for
Kβ is given byβ : (Kβ̂ − Kβ)T

[
K(XT X)−1KT

]−1

qσ̂2 (Kβ̂ − Kβ) ≤ F q
n−p,1−α


where K is a q × p matrix of range q.
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Prediction Interval

Remember that Y = XT β + ε,

Y |X ∼ N (XT β, σ2)

and Ŷ = XT β̂,

Ŷ |(X, X) ∼ N (XT β, σ2XT (XT X)−1X)

Because Y ⊥ Ŷ |X, then

Y − Ŷ |(X, X) ∼ N (0, σ2(1 + XT (XT X)−1X))
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Therefore,

Y − Ŷ√
σ̂2(1 + XT (XT X)−1X)

|(X, X) ∼ tn−p

▶ A (1 − α) × 100% prediction interval for Y is given by

XT β̂ ± tn−p,α/2

√
σ̂2(1 + XT (XT X)−1X)
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Normal Distribution Linear Regression Projections Linear Regression (2) Distributional Properties

Hypothesis Test
▶ Reject H : βj = m if∣∣∣β̂j − m

∣∣∣√
σ̂2(XT X)−1

j,j

> tn−p,1−α/2

▶ Reject H : aT βj = m if∣∣∣aT β̂ − m
∣∣∣√

σ̂2aT (XT X)−1a
> tn−p,1−α/2

▶ Reject H : Kβ = m if

(Kβ̂ − m)T

[
K(XT X)−1KT

]−1

qσ̂2 (Kβ̂ − m) > F q
n−p,1−α
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