Machine Learning Cross Validation

Irving Gómez Méndez

August-December, 2021

Introduction

Remember that the ridge estimator is given by

$$\hat{\beta}_R = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{Y},$$

and that there is an optimum value of λ , say λ^* that minimizes the MSE of the estimator. This parameter can be tuned by cross-validation (CV).

In a more general framework, it is common to have two separate goals in mind:

- Model selection: estimating the performance of different models in order to choose the best one.
- Model assessment: having chosen a final model, estimating its prediction error on new data.

Training-Validation-Testing Protocol

Since a different value of the parameter λ corresponds to a different ridge parameter and in turn into a different model, finding the optimum value of λ can be understood as a model selection problem.

If we are in a data-rich situation, the best approach for both problems is to randomly divide the dataset into three parts: a training set, a validation set, and a testing set.

- ▶ The **training set** is used to fit the models.
- The validation test is used to estimate the prediction error for model selection.
- the **testing set** is used to used to estimate the generalization error of the final chosen model.

A typical split might be 50% for training, 25% for validation and testing.

When there is insufficient data to split it into three parts, we can use cross-validation to approximate the validation step.

Cross-Validation

K-Fold Cross-Validation

K-fold cross-validation uses part of the available data to fit the model, and a different part to test it. We split the data into K roughly equal-sized parts; for example, when K = 5:

1	2	3	4	5
Train	Train	Validation	Train	Train

For the k-th part, we fit the model to the other K-1 parts of the data, and calculate the prediction error of the fitted model when predicting the k-th part of the data. We do this for $k = 1, 2, \ldots, K$ and combine the combine the K estimates of the error. Let $\kappa : \{1, \ldots, N\} \to \{1, \ldots, K\}$ be an indexing function that indicates the partition to which observation *i* is allocated by the randomization. Denote by \hat{f}^{-k} the fitted function, computed with the *k*-th part of the data removed. Then the cross-validation estimate of the prediction error is

$$\operatorname{CV}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L\left(y_i, \hat{f}^{-\kappa(i)}(x_i)\right).$$

Typical choices of K are 5 or 10. The case K = N is known as leave-one-out cross-validation (LOO-CV). In this case $\kappa(i) = i$, and for the *i*-th observation the fit is computed using all the data except the *i*-th

Tuning Parameters using Cross-Validation

Given a set of models $f(x, \alpha)$ indexed by a tuning parameter α , denote by $\hat{f}^{-k}(x, \alpha)$ the α -th model fit with the k-th part of the data removed. Then for this set of models we define

$$CV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} L\left(y_i, \hat{f}^{-\kappa(i)}(x_i,\alpha)\right).$$

The function $CV(\hat{f}, \alpha)$ provides an estimator of the test error curve (as a function of α) and we find the tuning parameter that minimizes it. Our final chosen model is $f(x, \hat{\alpha})$ which we then fit to all the data.

As an estimator of the prediction error, cross-validation would be biased upward.

Tuning the Ridge Parameter

Let be

$$\begin{split} \widehat{\mathbf{Y}}(\lambda) &= \mathbf{X} \widehat{\beta}_R(\lambda) \\ &= \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{Y} \end{split}$$

and

$$L\left(\mathbf{Y}, \widehat{\mathbf{Y}}(\lambda)\right) = \left(\mathbf{Y} - \widehat{\mathbf{Y}}(\lambda)\right)^{T} \left(\mathbf{Y} - \widehat{\mathbf{Y}}(\lambda)\right)$$
$$= \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}(\lambda))^{2}$$
$$\equiv L(\lambda)$$