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Two variables are collinear if the data vectors representing them
lie on the same line. More generally, k variables are collinear if
the vectors that represent them lie in a subspace of dimension
less than k, that is, if one of the vectors is a linear combination
of the others. In practice, such “exact collinearity” rarely
occurs, then, two variables are collinear if they lie almost on the
same line.

This is equivalent to saying that they have a high correlation
between them. We can readily generalize this notion to more
than two variables by saying that collinearity exists if there is a
high multiple correlation when one of the variables is regressed
on the others.

Collinearity has to do with specific characteristics of the data
matrix X and not the statistical aspects of the linear regression
model Y = Xβ + ε. That is, collinearity is a data problem, not
a statistical problem.
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Analysis of the Correlation Matrix

Examining the correlation matrix of the explanatory variables is
a commonly employed procedure. If we assume the X data
have been centered and scaled to have unit length, the
correlation matrix R is simply XT X.

While a high correlation coefficient between two explanatory
variables can indeed point to a possible collinearity problem,
the absence of high correlations cannot be viewed as evidence of
no problem. It is clearly possible for three or more variables to
be collinear while no two of the varaibles taken alone are highly
correlated. The correlation matrix is wholly incapable of
diagnosing such a situation.
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Variance Inflation Factor (VIF)
The diagonal elements of R−1, are called the variance inflation
factors, V IFi, and their diagnostic value follows from the
relation

V IFi = 1
1 − R2

i

where R2
i is the coefficient of determination of Xi regressed on

the remaining explanatory variables. The term “variance
inflation factor” derives from the fact that the variance of the
ith regression coefficient σ2

β̂i
, obeys the relation

σ2
β̂i

= σ2V IFi

where σ2 is the variance of the regression disturbance term.

A rule of the thumb is that a VIF bigger than 5 might
indicate collinearity.
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Relation with Numerical Analysis

It has been suggested to use the eigenvalues of XT X as a key to
the presence of collinearity : collinearity is indicated by the
presence of a “small” eigenvalue, where small is understood as
“small to the other eigenvalues”. This idea comes from the
extremely rich literature in numerical analysis showing the
relevance of the condition number of a matrix.

Numerical analysts are interested in the properties
(conditioning) of a matrix A of a linear system of equations
Az = c that allow a solution for z to be obtained with
numerical stability.
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The relevance of this to collinearity in least squares is readily
apparent, for the least-squares estimator is a solution to the
linear system (XT X)β̂ = XT Y.

Then, collinearity among the data series of X results in a matrix
A = XT X whose ill conditioning causes both the solution for b
and its variance-covariance matrix to be numerically unstable.
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Singular Value Decomposition (SVD)
Any n × p matrix X, considered here to be a matrix of n
observations on p variables, may be decomposed as

X = UDVT ,

where UT U = VT V = Ip and D is diagonal with nonnegative
diagonal elements µk, k = 1, ..., p, called the singular values of
X.

For the purposes of the collinearity diagnostics, it is always
desirable to scale X to have equal (unit) column lengths.
However, if the data are relevant to a model with a constant
term, X should contain uncentered data along with a column of
ones; indeed, the use of the centered data matrix X in this
situation is to be avoided, since centering can mask the role of
the constant in any underlying near dependencies and produce
misleading diagnostic results.
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Relation with eigenvalues of XT X

Noting that XT X = VD2VT , we see that V is an orthogonal
matrix that diagonalizes XT X and hence the diagonal elements
of D2, the squares of the singular values, must be the
eigenvalues of the real symmetric matrix XT X.

As a practical matter, however, there are reasons for preferring
the use of the singular-value decomposition.

1. It applies directly to the data matrix X that is the focus of
our concern, and not to the cross-product matrix XT X.

2. The notion of a condition number of X is properly defined
in terms of the singular values of X and not the square
roots of the eigenvalues of XT X.
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3. Whereas the eigensystem and the SVD of a given matrix
are mathematically equivalent, computationally they are
not.Algorithms exist that allow the singular-value
decomposition of X to be computed with much greater
numerical stability than is possible in computing the
eigensystem of XT X.

Then, the collinearity diagnostics we discuss should always be
carried out using the stable algorithm for the singular-value
decomposition of X rather than an algorithm for determining
the eigenvalues and eigenvectors of XT X.
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Exact Linear Dependencies

Let us assume X has exact linear dependencies among its
columns, a case rarely encountered in actual practice, so that
rank(X) = r < p . Since, in the SVD of X, U and V are each
orthogonal (and hence are necessarily of full rank), we must
have rank(X) = rank(D). There will therefore be exactly as
many zero elements along the diagonal of D as the nullity of X,
and the SVD in may be partitioned as

X = UDVT = U
[
D11 0

0 0

]
VT

where D11 is r × r and nonsingular.
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Postmultiplying by V and further partitioning, we obtain

X
[
V1 V2

]
=

[
U1 U2

] [
D11 0

0 0

]

where V1 is p × r, U1 is n × r, V2 is p × (p − r), and U2 is
n × (p − r). This results in the two matrix equations

XV1 = U1D11 (1)
XV2 = 0 (2)

Interest centers on Equation (2), for it displays all of the linear
dependencies of X. The p × (p − r) matrix V2, provides an
orthonormal basis for the null space associated with the
columns of X.
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Near Linear Dependencies

If ,then, X possessed p − r exact linear relations among its
columns (and computers possessed exact arithmetic), there
would also be exactly p − r zero singular values in D, and the
variables involved in each of these dependencies would be
determined by the nonzero elements of V2.

In most statistical applications, the interrelations among the
columns of X are not exact dependencies, and computers deal in
finite, not exact, arithmetic. Nevertheless, each near linear
dependence among the columns of X will manifest itself in a
small singular value, a small µ. The question now is to
determine what is small, we are greatly aided in answering this
question by the notion of condition number of a matrix X.

15



Condition Indexes



VIF SVD Condition Indexes Variance Decomposition

Condition Index

A means for defining the conditioning of a matrix that accords
somewhat with intuition is afforded by the singular-value
decomposition.

The familiar Euclidean norm of an n-vector z, denoted ∥z∥, is
defined as

∥z∥ = (zT z)1/2.

An important generalization of the Euclidean norm to an n × n
matrix A is the spectral norm, denoted A and defined as

∥A∥ = sup
∥z∥=1

∥Az∥ .
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It is readily shown that ∥A∥ = µmax, that is, the maximal
singular value of A. Similarly, if A is square,

∥∥A−1∥∥ = 1/µmin.
Further, like the Euclidean norm, the spectral norm can be
shown to be a true norm; that is, it possesses the following
properties:

1. ∥λA∥ = |λ| ∥A∥ for all real λ and all A.
2. ∥A∥ = 0 if and only if A = 0, the matrix of zeros.
3. ∥A + B∥ ≤ ∥A∥ + ∥B∥ for all m × n matrices A and B.

And, in addition, the spectral norm obeys the following
relations:

4. ∥Az∥ ≤ ∥A∥ ∥z∥.
5. ∥AB∥ ≤ ∥A∥ ∥B∥ for all commensurate A and B.
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Analysis of Linear Systems
We shall now see that the spectral norm is directly relevant to
an analysis of the conditioning of a linear system of equations
Az = c. In the event that A is fixed but c changes by δc, we
have δz = A−1δc, or

∥δz∥ ≤
∥∥∥A−1

∥∥∥ ∥δc∥ .

Further, employing property 4 above to the equation system, we
have

∥c∥ ≤ ∥A∥ ∥z∥ ;

and from multiplying these last two expressions we obtain

∥δz∥
∥z∥

≤ ∥A∥
∥∥∥A−1

∥∥∥ ∥δc∥
∥c∥

.
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A similar result holds for perturbations in the elements of the
matrix A. Here it can be shown that

∥δz∥
∥z + δz∥

≤ ∥A∥
∥∥∥A−1

∥∥∥ ∥δA∥
∥A∥

.

The magnitude ∥A∥
∥∥A−1∥∥ is defined to be the condition

number of the nonsingular matrix A and is denoted as κ(A).
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The concept of condition index is readily extended to a
rectangular matrix and can be calculated without recourse to
an inverse.

From the SVD, X = UDVT , it is easily shown that the
generalized inverse X+ of X isVD+UT , where D+ is the
generalized inverse of D and is simply D with its nonzero
diagonal elements inverted. Hence the singular values of X+ are
merely the reciprocals of those of x, and the maximal singular
value of X+ is the reciprocal of the minimum (nonzero) singular
value of x.

Thus for any n × p matrix X we may define the condition
number to be

κ(X) = µmax

µmin
≥ 1.
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kth Condition Index

Define
ηk ≡ µmax

µk
, k = 1, . . . , p

to be the kth condition index of the n × p data matrix X. The
largest value for ηk is also the condition number of the given
matrix. Therefore there are as many near dependencies among
the columns of a data matrix X as there are high condition
indexes.
Weak dependencies are associated with condition
indexes around 5 to 10, whereas moderate to strong
relations are associated with condition indexes of 30 to
100.
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Variance-Decomposition Proportion

Using the SVD, X = UDVT , the variance of matrix of β̂,
V

(
β̂

)
, may be written as

V
(
β̂

)
= σ2(XT X)−1 = σ2VD−2VT ,

or, for the kth component of β̂,

V
(
β̂k

)
= σ2

p∑
j=1

v2
kj

µ2
j

.

Define the k, jth variance-decomposition proportion as the
proportion of the variance of the kth regression coefficient
associated with the jth component of its decomposition.
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Calculate of the Variance-Decomposition Proportions

These proportions are readily calculated as follows. First let

ϕkj ≡
v2

kj

µ2
j

and ϕk ≡
p∑

j=1
ϕkj k = 1, . . . , p.

Then, the variance-decomposition proportions are

πjk ≡ ϕkj

ϕk
, k, j = 1, . . . , p.
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It is usefull to present this analysis in a summery table,
sometimes called the Π matrix.

Associated
Singular Proportions of Condition

Value V
(
β̂1

)
V

(
β̂1

)
· · · V

(
β̂p

)
Index

µ1 π11 π12 · · · π1p η1
µ2 π21 π22 · · · π2p η2
...

...
...

...
...

µp πp1 πp2 · · · πpp ηp
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Near Orthogonality

Note that vkj = 0 when the columns k and j of X belong to
mutually orthogonal partitions. Thus we see that the bad effect
of collinearity, resulting in relatively small µ’s, may be
mitigated for some coefficients by near orthogonality, resulting
in small vkj ’s.
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At Least Two Variables Must Be Involved
Since two or more variables are required to create a near
dependency, it must be that two or more variables are adversely
affected by high variance-decomposition proportions associated
with a single singular value.

To illuminate this, consider a data matrix X with mutuallly
orthogonal columns. Hence the associated Π matrix of
variance-decomposition proportions must take the following
form:
Associated
Singular Proportions of Condition

Value V
(
β̂1

)
V

(
β̂1

)
· · · V

(
β̂p

)
Index

µ1 1 0 · · · 0 η1
µ2 0 1 · · · 0 η2
...

...
... . . . ...

...
µp 0 0 · · · 1 ηp 28
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