
Machine Learning
(Soft) k-means
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EM Algorithm Gaussian Mixture k-means

To fit the statistical models we hold a sample (x1, . . . , xn).
However, sometimes we do not know all the observations. For
example, if X is the survival time of a component and τ is the
experiment’s duration, it might happened that the component
would not broke before τ , i.e. X > τ and we would not
observed its value (we only would knew that X > τ) and the
observation would be censored.
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EM Algorithm Gaussian Mixture k-means

Assume that the complete data have a joint density
f(x; ϕ), while the joint density of the observed data is
denoted by g(y; ϕ), and the joint density of the complete
data given the observed is given by k(x|y; ϕ).

Thus, we want to find the value of the parameters ϕ that
maximize f(x; ϕ). Note that if we have access to the complete
observations, then the observed data do not add information so

f(x; ϕ) = f(x, y; ϕ) = k(x|y; ϕ)g(y; ϕ)

and
log f(x; ϕ) = log g(y; ϕ) + log k(x|y; ϕ)
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EM Algorithm Gaussian Mixture k-means

But we do not have access to x! We only have the observed
data y. To solve this problem, we are going to substitute the
unobserved values by their expected value fixing the value of
the parameters to be ϕ′, i.e.

Step E:

Q(ϕ|ϕ′) = Ex∼f(·;ϕ′) log g(y; ϕ) + Ex∼f(·;ϕ′) log k(x|y; ϕ)
= log g(y; ϕ) + Ex∼f(·;ϕ′) log k(x|y; ϕ)

Step M: We find the parameters ϕ that maximize Q(ϕ|ϕ′).

Finally the EM algorithm consists in iterating the previous
steps.
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EM Algorithm Gaussian Mixture k-means

A gaussian mixture is a powerful and useful model to estimate
densities, where the density function is modeled as

f(x) =
k∑

ℓ=1
πℓϕ(x; µℓ, Σℓ)

Let be Y ∈ {1, . . . , k} the random variable which determines
the gaussian distribution that generated x, i.e.

P(X = x) =
k∑

ℓ=1
P(X = x|Y = ℓ)P(Y = ℓ)

=
k∑

ℓ=1
πℓϕℓ(x)

7



EM Algorithm Gaussian Mixture k-means

In the context of density estimation, we only have observations
(x1, . . . , xn) that come from a unknown distribution, whose
density we want to estimate thus, there is no (y1, . . . , yn). But
in order to estimate the real density function through our
gaussian mixture, we can consider the “complete” data as
((x1, y1), . . . , (xn, yn)) and the “observed” data as (x1, . . . , xn).
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EM Algorithm Gaussian Mixture k-means

Moreover, we are going to denote

yi =


(1, 0, 0, . . . , 0) with prob. π1
(0, 1, 0, . . . , 0) with prob. π2

...
...

(0, 0, 0, . . . , 1) with prob. πk

and the density of yi can be written as

f(yi|θ) = πwi1
1 πwi2

2 · · · πwik
k ,

where wij ∈ {0, 1} for j = 1, . . . , k and
∑k

j=1 wij = 1
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EM Algorithm Gaussian Mixture k-means

With this notation, we can write the conditional density of xi

given yi as

f(xi|yi, θ) = ϕwi1
1 (xi; µ1, Σ1)ϕwi2

2 (xi; µ2, Σ2) · · · ϕwik
k (xi; µk, Σk).

Thus, the joint distribution of the “complete” data can be
written as

f(x, y|θ) =
n∏

i=1
f(xi, yi|θ)

=
n∏

i=1
f(xi|yi, θ)f(yi|θ),
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EM Algorithm Gaussian Mixture k-means

And

log f(x, y|θ) =
n∑

i=1
log f(yi|θ) + log f(xi|yi, θ)

=
n∑

i=1

(
k∑

ℓ=1
wiℓ log πℓ +

k∑
ℓ=1

wiℓ log ϕℓ(xi; µℓ, Σℓ)
)

=
n∑

i=1

k∑
ℓ=1

wiℓ

(
log πℓ + log ϕℓ(xi; µℓ, Σℓ)

)
But, the wij are not observed! To solve this problem we are
going to use the EM algorithm.
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EM Algorithm Gaussian Mixture k-means

Step E:

Q
(
θ|θ(t)

)
=

n∑
i=1

k∑
ℓ=1

E
[
wiℓ|xi, θ(t)

] (
log πℓ + log ϕℓ(xi; µℓ, Σℓ)

)
,

let be w
⋆(t)
iℓ = E

[
wiℓ|xi, θ(t)

]
Step M:

maximize
{πℓ,µℓ,Σℓ}

n∑
i=1

k∑
ℓ=1

w
⋆(t)
iℓ

(
log πℓ + log ϕℓ(xi; µℓ, Σℓ)

)

subject to
k∑

ℓ=1
πℓ = 1
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EM Algorithm Gaussian Mixture k-means

The optimization problem can be solved using Lagrange
multipliers. The part of the Lagrangian associated to πj is
given by

L(πj) =
n∑

i=1
w

⋆(t)
ij log πj + λ

(
1 −

k∑
ℓ=1

πℓ

)

Deriving L with respect to πj and evaluating at (π⋆, λ⋆). We
have that

∂L

∂πj

∣∣∣∣∣
(π⋆,λ⋆)

= 0

⇔
∑n

i=1 w
⋆(t)
ij

π⋆
j

− λ⋆ = 0
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EM Algorithm Gaussian Mixture k-means

It follows that

λ⋆ =
∑n

i=1 w
⋆(t)
ij

π⋆
j

,

and

π⋆
j = 1

λ⋆

n∑
i=1

w
⋆(t)
ij

⇒
k∑

j=1
π⋆

j = 1
λ⋆

n∑
i=1

k∑
j=1

w
⋆(t)
ij

⇒ 1 = n

λ⋆
⇒ λ⋆ = n.

Thus,

π⋆
j = 1

n

n∑
i=1

w
⋆(t)
ij
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EM Algorithm Gaussian Mixture k-means

Similarly, considering the part of the Lagrangian associated to
µj and Σj , it can be shown that

µ⋆
j = 1∑n

i=1 w
⋆(t)
ij

n∑
i=1

w
⋆(t)
ij xi,

and
Σ⋆

j = 1∑n
i=1 w

⋆(t)
ij

n∑
i=1

w
⋆(t)
ij (xi − µ⋆

j )(xi − µ⋆
j )T
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EM Algorithm Gaussian Mixture k-means

All that rest is to calculate w
⋆(t)
ij .

First, use Bayes’ theorem to show that

P(yi|xi, θ) = P(xi|yi, θ)P(yi|θ)
P(xi|θ)

= [π1ϕ1(xi; µ1, Σ1)]wi1 · · · [πkϕk(xi; µk, Σk)]wik∑k
ℓ=1 πℓϕℓ(xi, µℓ, Σℓ)

Note that wij ∈ {0, 1}, i.e. wij ∼ Bernoulli and
{wij = 1} ≡ {yi = (0, . . . , 1, . . . , 0)}, where the 1 is at the j-th
position.
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EM Algorithm Gaussian Mixture k-means

Thus,

w
⋆(t)
ij = E

[
wij |xi, θ(t)

]
= P

(
wij = 1|xi, θ(t)

)
= P

(
yi = (0, . . . , 1, . . . , 0)|xi, θ(t)

)

=
π

(t)
j ϕj

(
xi; µ

(t)
j , Σ(t)

j

)
∑k

ℓ=1 π
(t)
ℓ ϕℓ

(
xi, µ

(t)
ℓ , Σ(t)

ℓ

)
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EM Algorithm Gaussian Mixture k-means

Here is the final algorithm to estimate the gaussian mixture:
1. Initialize π̂

(1)
1 , . . . , π̂

(1)
k , µ̂

(1)
1 , . . . , µ̂

(1)
k , Σ̂(1)

1 , . . . , Σ̂(1)
k .

2. E-step: Compute

ŵ
(t)
ij =

π̂
(t)
j ϕj

(
xi; µ̂

(t)
j , Σ̂(t)

j

)
∑k

ℓ=1 π̂
(t)
ℓ ϕℓ

(
xi, µ̂

(t)
ℓ , Σ̂(t)

ℓ

) , j = 1, . . . , k.

3. M-step: Update

π̂
(t+1)
j = 1

n

n∑
i=1

ŵ
(t)
ij

µ̂
(t+1)
j = 1∑n

i=1 ŵ
(t)
ij

n∑
i=1

ŵ
(t)
ij xi

Σ̂(t+1)
j = 1∑n

i=1 ŵ
(t)
ij

n∑
i=1

ŵ
(t)
ij

(
xi − µ̂

(t)
j

) (
xi − µ̂

(t)
j

)T
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EM Algorithm Gaussian Mixture k-means

Ina clustering problem we intend to split the data into k
groups. To do so we look for a point that represents the group
and assign the observations to the closest cluster.

Let be Y the (unobserved) random variable that indicate to
which group X belongs, then

P(X = x) =
k∑

ℓ=1
P(X = x|Y = ℓ)P(Y = ℓ)

=
k∑

ℓ=1
Pℓ(x; θℓ)πℓ
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EM Algorithm Gaussian Mixture k-means

We can make Pℓ(·; θℓ) = ϕ(·; µℓ, Σℓ) and take µℓ as the group
representative. Then

P(X = x) =
k∑

ℓ=1
πℓϕ(x; µℓ, Σℓ),

and estimate πℓ, µℓ, Σℓ.

But this is exactly the problem of estimating a gaussian
mixture!

Now, two questions arise, how many groups/clusters we need
and to evaluate the classification of the observations to the
clusters. There are at least two ways to answer these questions.
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EM Algorithm Gaussian Mixture k-means

The first way to answer the questions is through the use of the
Square Sum of Residuals (SSR). If xi was assigned to the j-th
cluster, then since µj is represents the group, we can take
x̂i = µj as an estimate of xi, this the SSR is given by

SSR =
n∑

i=1
(xi − x̂i)T (xi − x̂i)

However, the SSR decreases as we increase the number of
clusters, then an overfitting problem can arise if we minimize
SSR. Therefore, instead of minimizing the SSR, we estimate the
number of clusters taking the knee of the SSR considering it as
a function of the number of clusters.
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EM Algorithm Gaussian Mixture k-means

The second way to answer the questions is through the use of
the silhouette graphs. Let be
▶ ai : the average distance of the i-th observation to the rest

of the members of its cluster.
▶ bi = minc d(ci, c): the minimum distance of xi to the rest of

the groups, and d(xi, c) is the average distance of xi to
cluster c, for all c such that xi ̸∈ c.

We define the silhouette of i as:

si = bi − ai

max{bi, ai}
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EM Algorithm Gaussian Mixture k-means

If

si


≃ 1 then i is well-classified,
≃ 0 then i is in the frontier of its cluster,
< 0 then imight be classified in the wring cluster.

To determine the number of clusters, we can take s̄ = 1
n

∑n
i=1 si

and maximize it as a function of the number of clusters.
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