Hierarchical Normal Model
Technical Notes

Irving Goémez Méndez

Assume that there are J groups, that we count with a sample Yj;, ¢ = 1,...,n; for the j-th
group, where each observation is independent from other observations within the same group
and from observations of other groups, and that Yz-j\ej,af. ~ ./\/'(Hj,ajz) fori =1,...,n; and
j=1,...,J.

1 Nonhierarchical models with ¢2 known

Before moving to the hierarchical model, we first consider two simple nonhierarchical models—
estimating the mean of each group independently, and complete pooling. Assume for this section
that the variance within each group 0]2 is known.

1.1 Separate estimates

Figure 1: Separate estimates.

Denote by

the sample mean of each group j with variance 6]2- = 0]2- /nj, then

Yj|0ja O'JZ ~ N(Qj, 5']2)

Because we are considering all the within-group variances o;’s to be known, the likelihood
of our model is determined just by the likelihood of each Y;, assume that all the 6;’s are
independent and p(6;]6%) o 1 (_s «)(6;), then the posterior distribution for each 6; is

0,02, Y ~ NV, 52).

And B
Yjlo®, Y ~ N(Y;,07 +57),

where Y; represents an observation within group j.
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1.2 Pooled estimate

Figure 2: Pooled estimate.

Consider now that we restrict the values ; to be equal to a common mean 6 and all the values
0‘J2- to be equal to some common known o?. Thus
¥ 2 =2
Y.|0,0° ~ N (8, 7))
where 52 = 02 /n;.
Assume p(0]0?) o< 1 (_og o) (0), then

1 Y, —0)?
p(Alo?,Y) o exp —3 Z % 1 (“o0,00)(0)
=t 9
1 Y? — 2}7.]'9 + 92
= exp —5 Z ) 1 (—oo,oo)(e)
i=1 j
J J o
X exp —% (92212202}2 I (—o0,00) ()
j=1"J j=1 7

On the other hand, since the logarithm of the posterior is a quadratic function on 6, then
010°,Y ~ N (p, 9*), thus

2
p(6]0%, Y) o exp {—("“)} 1oy (6)

2p
1/l pow
1 /451 I

From the last expression, we recognize
1
2 _
90 - J 12
S =2
J o

that is, the precision is the sum of all the precisions, and

Ly, S
1% Yj ]:102__



That is,
0|0’2,Y ~N(Y., @2),

and B
Yilo?, Y ~ N(Y.,0% + ¢?).

2 Nonhierarchical models with ¢2 unknown

For this section we consider the more realistic approach where the within-group variances UJZ’S

are unknown. The objective is to determine the full conditional posterior distributions for the
parameters. Once we have deduced the full conditional posterior for all our parameters, it is
straightforward to implement the Gibbs sampler algorithm, and obtain a sample from the joint
posterior distribution.

2.1 Separate estimates

Consider the model
Yijl05,03 ~ N (6;,03),

with the noninformative prior

On the other hand, note that

1 &
p(0510,Y) o =1 (0,00 () [ [V (Y16, o)

J =1
1 1 1 &
x =51 (0,00)(07) 55 expq —55 > _(Vij — 05)°
0.]2 ( )\ (U?)nj/2 20—]2 ; J J
_ n,;o2
= (0]2>_(nj/2+1) exp {_ 21(72.1 } 1 (0,00) (02)7
J

from this expression we observe that

O'J2-|9, Y ~ Inverse-x*(n;, &]2-),

where
nj

5 1
F= =) (Vi —0)%

N
J =1



Algorithm 1 Gibbs sampler for separate models.

Input: Sample y;; (1 = 1,...,n5, j = 1,...,J), observed groups’ averages ¥.;, and posterior
sample size S.

Output: Posterior sample for GJ(S), 32(5) and Y;.(S) (G=1,...,J,s=1,...,5).
Set 9](- ) = Y.
for s=1,...,5 do
for j = 1,...,Jdo

. 2
Compute 6?(8) =1 Z;-Zl (yij — 9(-3_1))

n; Vi

Simulate 032-(8) ~ Inverse—x2 ( ; 6]2.(8))
Slmulate@ rv/\/’(y]7 o; /nj>

SlmulateY N/\/( I ](s)
end for
end for

From the simulated sample we can estimate posterior intervals. Overlapping intervals for
the #’s and the o’s might be considered as evidence against the use of separate models in favor
of a pooled estimate.

2.2 Pooled estimate

Consider the model where all the groups share the same mean and variance, that is
Yi;l6, % ~ N(9,02),

and the noninformative prior given by

1
p(0,0%) gﬂ (—00,00) (D)1 (0,00) (7).

We already deduced that the conditional posterior for 6 is

0)0%, Y ~ N (Y., %),

where .
J
TG
S
1
2
¥ = T
Sk
and )
_ o
]2' = ;) J = 17 . 7J
J
On the other hand, note that
1 L
P10, ) o 51 0y (0*) [T [V (¥is10,0%)
j=li=1



where we can deduced easily that
o210, Y ~ Inverse-x2(n, 62),

where n = Z}]:1 nj, and

2 1 2
o ZEZZ(YU_G) :

j=1i=1

Algorithm 2 Gibbs sampler for the pooled model.

Input: Sample y;; (i =1,...,n5, j =1,...,J), observed groups’ averages ¥.;, observed groups’
sample variances s?, and posterior sample size S.
Output: Posterior sample for 9§8), ajz.(s) and Y}(S) (G=1,...,J,s=1,...,5).
Set _
J 7

ijl s?/nj

90 — —
ijl s?/nj

fors=1,...,5do
~2(s n; s—1)\2
Compute 62(5) = %Z}le >y (yij — o 1))

Simulate Uf(s), . ,ai(s) ~ Inverse-x? (n, &2(8))
Compute ; .y
2j=1 oy,
and
H2) = 1

ZJ 1
= 2(s
j=1 o_j( )/n]'

Simulate 017,05 ~ A (8),42))

: (s) (s) 2(s)\ . _
Simulate Y] NN(Hj .0 ),]—1,...,J

end for




3 Hierarchical model with common ¢2 known

Figure 3: Hierarchical model with common o2,

Let be Y;;|0;,0% ~ N(0j,0%) for i = 1,...,n; and j = 1,...,J, then Y,|0;,0% ~ N(Hj,ﬁjz-),

where 6]2- =02/ n;. For the convenience of a conjugate model, we assume

0j|:u7 T3~ N(ﬂa 7_2)'

Due to the conjugacy, we can easily determine the posterior distribution for all the 6;], 2,02 Y,
which are independent and
9]’:“7 T27 027 Y ~ N(0]7 %j)v

where - .
. Yyt
9 _J
= T 1 1
2T
J
and 1
Vo, 1 1
32 T 72

It can also been shown easily that the posterior distribution of the observations Y;|u, 2,02Y
are independent and
}/]'|M7T270-27Y NN(0j702 + VY@])

3.1 Empirical Bayes

To assign values for the parameters i, 72 and o2, we can take an empirical approach based on
the analysis of variance. Let be
J
_ 1
!
j=1

the mean square within groups M Sy is given by
n;

1 _
MSy = ——— Y — Y.:)2.
SW J(ﬁ— 1) j_lg( J J)

Because E(M Syy|0?) = 02 (see page 116 of BDA 3), then an unbiased estimator for o2 is given
by 62 = MSy. Thus, in the case where ¢ is not known, we could use 62 and act as if it was
the real value of o2.



On the other hand, let be
ZJ niy.
}_/ _ ]21 0'2 *J
===,
D1 o

the mean square between groups M Sp is given by

n7? + o2 (see page 116 of BDA 3), then unbiased estimators for p

Because E(MSg|o?,7%) =
=Y. and

and 72 are given by /i

n
3.2 Full Bayesian approach

Instead of using an empirical approach to assign values for x, 72 and o2 based on point estimates,

from a fully Bayesian approach we should assign a joint prior distribution p(u, 7|0?). Because we

are considering o known, then the likelihood of the model can be represented by the sufficient

statistics Y.j, which satisfy that Y;;|0;,0° ~ N'(6;,57). Considering 0;|u, 7> ~ N (1, 72), then
Vilp, 72,07 ~ N(p, 53 4+ 72).

The posterior distribution of ¢ and 7 could be calculated from
J
P, 7107, Y) o p(u, 7l0?) H (Vslp, 7, 02

(Y, —p)?
p(ﬂ77|02)eXP - 2_37_1_2
j=1 J T

3.2.1 Conditional posterior distribution of u, p(u|r,%,Y)
Consider p(u, T|o?) = p(u|r, 0?)p(r]0?) and take p(u|7, 02) o< 1 (_og o0y (1), thus

J

(17102, Y) o p(rfo?yexp d — 2 =2 Ly

P, 7|o*, Y) o< p(r]o”) exp ¢ —5 o (—o0,00) (1)
- J

j=1

then
J —
1o (V) —p)?
p(ulT, UzaY) X exp D) Z 5277# L (—oo,00) (1)
j=1 J

From our analysis on the pooled estimate, we recognize immediately that

:U’|Ta 027Y ~ N(ﬂ? VM):

where _
ZJ Y.,
J=1 2472 1
A J —
,u—in . ,andVH—ZJ -
J=1 53472 J=1 53472



3.2.2 E(|r,0%Y) and V(0|1,0%Y)
Using these expressions, we can compute

E<6J ’7_7 027 Y) = EM|T,CI2,Y [E<9] ’Ma T27 027 Y)]

= E/LIT,Uz,Y [9]]
5J2 3T M
EMIT,J,QY 1 1
Z T
J
IR VSR U
7Vt
= 1 T
7t

and

V(ej |Ta 027 Y) = EH\T,JQ,Y[V(HJ' |/’L> 7_27 027 Y)] + V,u|‘r,02,Y [E(HJ |/L7 7_2, 027 Y)]
E,LL\T,UQ,Y[‘/@]'] + V/.L|T,O'2,Y [9]]
i

J

LY, +
+

= 4
=

+ Vmﬁa?,Y

|~
D

o T

<oy

Because 9j]7'2, o2,Y follows a normal distribution, we conclude that
0;|7%, 0% Y ~ N(E(0,|1,0%,Y),V(0;|7,0%,Y))

and
Yj|72, o2, Y ~ N(E(0;], o2, Y), o® + V(,|T, JQ,Y)).

J -J
=
Note that E(0;|7,02,Y) 7 fand fi — 5 ZJ L =Y., while V(0;|,0%,Y) v V,, and
T— 152
.7
V, — =7+ = 2. On the other hand, E(¢;|7,0%,Y) — Y.;, while V(0;|7,0%,Y) ——
7—0 Z] 1 2 T—00
=2

J
This result is consistent from a classical analysis of variance, if the ratio of between to within

mean squares is significantly greater than 1, then the analysis of variance suggests separate
estimates, éj = Yj, at the same time this would also mean that 7 is large. If the ratio of mean
squares is not ‘statistical significant’ different from 1, then pooling is reasonable and 9j =Y.,
for all j, which would also mean that the F' test cannot reject the hypothesis 7 = 0. From these
observations we can conclude that the Bayesian analysis under the hierarchical model provides
a compromise that combines information from all the groups without assuming all the 6;’s to

be equal.



3.2.3 Conditional posterior distribution of 7, p(r]0?,Y)
Because p(u, 7|02, Y) = p(u|r,0%,Y)p(r|0?,Y), then

p(p, 7|0, Y)
p(plr, 02, Y)
p(p, 7lo®) TT=y p(YVl 1,72, 0%)
p(plT, 0% Y)
2 ZTT . NVl 52 + 72
_ p(ulm )p(rlo?) [T N (Yln, o5 +77)
N (plfe, V) ’

because we assume p(u|7, 02) 1 (_sg 00y (1), then

p(r|0®Y) =

J Y, —_
(1]0?) [Tz MYk, sz +7%)
N(/.L‘/.Al,, V#)
Remember that all the factors of p must cancel when the expression is simplified. This means

that the identity must hold for any value of u, in particular it holds if we set u to [, which
makes evaluation of the expression simple,

p(rlo®) [T N (Y52 55 +7°)
N(ﬂ’ﬂ? VH)

p
p(7]0®,Y) o

p(7]0%Y)

J > .
_ _ Yj—f
oty [T ) e {0
j=1 J

To complete the analysis we must assign a prior distribution for 7. However, we must examine

the posterior and ensure it has a finite integral for the chosen prior. Remember that [ —O> Y.
T—>

and V), — ¢%. Then, everything multiplying p(7|o?) approaches a nonzero constant limit as
7 tends to zero. Thus, the behavior of the posterior density near 7 = 0 is determined by the
prior density. The usual ‘noninformative’ function p(r|o?) oc 11 (0,00)(T) is not integrable for
any small interval including 7 = 0 and yields a nonintegrable posterior density. Meanwhile, the
uniform prior distribution p(7|o?) o 1 (0,00)(7) yields a proper posterior density.

Thus, making p(7|0?) o 1 (g,o)(7), the conditional posterior distribution of 7 is given by

J > N

2 1/2 ~2 2\—1/2 (Y5 —4)

Furthermore, let be 7 the MAP estimate of 7 then, under regularity conditions, an approximate
interval of probability (1 — a)) x 100% for 7 is given by

11—«
p(T‘O’2,Y) qX%
T — 55—~ > €exXp{ —
p(7]02,Y) 2
2

4 Hierarchical model with common ¢ unknown

Unfortunately, for most of the practical problems o2 is unknown. Because o is a scalar parameter

of our observations, we can take a uniform prior distribution for logo. Then, using the priors



previously defined for the other parameters, we get the following joint prior

J

(9 w, T log J) oc 1 (—00,00) (M)ﬂ (0,00) (T)]l (—00,00) (log U) HN 0 |:u7 )
j=1
or, equivalently

X —

11
p(0, 1, 7%, %) = gﬂ (—o00,00) (1)L (0,00) (%)

m“

N (0], 72
j:l
Thus, the joint posterior is given by
11 4 S
(6, 11, 7%, 0%|Y) o —al- 50:00) (1)L (0,00) (7)1 (0.00) (0%) [T N (051, 7) TT T TV (35165, %)
j=1 j=li=1
Conditional posterior for 6

We already deduced that the posterior distribution of 0;|u, 7%, 0%, Y
are independent and

Gj]u,72,02,YNN(éj,%)
where - .
. Yt
0; 5 1
Zta
J
and )
Vy =
RET
J

Conditional posterior for p

J
P10, 72,02, Y) o< 1 (_oo 0y (1) [ [ N (05112, 72
7j=1
1 J
scexpq S by .
7j=1

From our analysis on the pooled model, it is immediate that

M|07 T27 027 Y ~ N(ﬂ? 7—2/‘])7
where 1 = %Z‘] ;
Conditional posterior for o2

J ny
1
p(02|07:u77—21Y) X ;1(000 2



Thus,
o210, 11, 7%, Y ~ Inverse-x%(n, 62),

where n = Z}]:l nj, and

1
6% =~ DN (v -0

j=1i=1
Conditional posterior for 72.
2 2 1 2 d 2
(770, 1,0°,Y) o W]l(o,oo)(T )HN(QJ"/%T )
j=1
J
1 1 1 ) )
" )2 (7292 TP T2 D 05— 1) Lipeo)(T)
j=1
_(d=1 J —1)7#2
= () 5V e { - (2
T
Thus,
7200, p, o2 Y ~ Inverse—xz(J —1,7%),
where

J
1
~2 ) 2
’ _J—1JZ:1(91_/‘) :
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Algorithm 3 Gibbs sampler for the hierarchical model with common ¢? unknown.

Input: Sample y;; (1 =1,...,n5, j =1,...,

punctual estimate for u, e.g.
J = 2
ijl y'jnj/sj
J )
Zj:l nj/S?

mates for §;, e.g. éj =Y,
i =

and posterior sample size S.

Output: Posterior sample for 95»8), ), 7 o) and Yj(s) G=1,...

Sa@m:@amﬂ@:ﬂ
for s=1,...,5do
Compute 72(5) = 1 Zj . ( s=—1) M(s—l))Q
Simulate 72(5) ~ Inverse X2 (J -1 72(8))
Compute (%) = 1 ZJ 9(5 b
s)/J
Compute 52(5) = L Z] S

Simulate p(®) ~ (A 5)

)
(1 0°1)’

Simulate 02(8) ~ Inverse-y ( 52 )
forj=1,...,J do
Compute
ﬁ@_am@d+ﬂwM
- 7] + 1
o2(s) 72(s)
and 1
! UQ(JS) + 72(s)

Simulate 0( ) N (é(s) Vg(.s)>

’ J
Simulate Y( ~N (9 S), 02(5)>
end for
end for

J), observed groups’ averages 7.j, punctual esti-
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5 Hierarchical model with non-common o2

Figure 4: Hierarchical model with non-common 2.

Up to now, we have consider for the hierarchical model that all the groups have the same within-
variance o2. In this section we consider the case where these variances are not the same, but
they are not completely independent either. As we did with the groups’ means, we assume that
these variances share a common structure, yielding a hierarchical model for the within-variances.

Consider that Y;;|6;, 0]2- ~ N (8, ajz-). For the simplicity of a conjugate model, we consider

0]‘:“’7 7-2 ~ N(/’% 7-2)7
and
0]2-|1/, p? ~ Inverse-x? (v, p?).

It is easy to see that the conditional posterior distributions for each ¢;, 1 and 72 are the same
as those calculated in the previous section. Thus, we only have to determine the conditional

posterior distributions for 032-, v and p?.

5.1 Conditional posterior for 032.
Due to the conjugacy property of the model,

aj2-|07 v, p2, Y ~ Inverse—XQ(Vj, Er]z),

where v; = v +nj,

~2 I/p2 + n;jv;
J V+n; ’
and s
1 J
v = > (Y —0)>%
T =1
Note that
E(0316,v, 0%, Y) = 252
J
_ Vp2 + n,v;
v+n; —2’
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and

V(c?2|0,v,p%,Y) = 21/]2 o4
s (vj —2)%(v; —4)
_ 2(vp? + njv))?

(w4 n;—2)2w+n; —4)

from this expressions is easy to see that in the limit case when v — oo, E(UJZ 0,v,02,Y) — p?
14 (o]
and V(U]2-|0, v, p?,Y) — 0. On the other hand, if v — 0, then 0']2-|0, v, 0%, Y ~ Inverse-x?(n;,v;),

corresponding with the separate estimates.

5.2 Estimating p? and v

Before establishing prior distributions for p? and v, we present a practical approach to get punc-
tual estimates for these parameters that we have seen in simulations to be a good approximation
for their real values.

Since 02 ~ Inverse-x?(v, p?), then

v
B(o?l, p?) =~
and 02
V(o?|v, p*) = mﬁ#-
Let be E, the average of the observed sample within-group variances s2, ... ,33 and V2 their

variance, thus using the method of moments we have

1 v—2

ES2:A ﬁ2:>ﬁ2: = Es27
v—2
and
Vo= 2];/2( LIL‘A/%%(EU)Q
2w -4) °
N 2(E32)2
=>0=——""44,
v V., +
thus

2V 2
~2 S
=(l—-——-++—"—— | F
g ( 2<E52>2+4V52> +

_ 2(E52)2+2V;2 I
T \2EL)?+ 4V ) T

We could set the value of p? in this estimate and plot E(O'JQ-|0, v, p?,Y) and V(O‘?’O, v, 0%, Y)

as functions of v. In case that we don’t know the value for 8, we could substitute v; by the
sample variance of the group s?.
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5.3 Conditional posterior for p?

The joint distribution is now given by

1
p(e, 122 7_23 027 v, p2 ‘Y) OC;:H- (—00,00) (M)]]- (0,00) (T2)p(1/)p(p2)

J J nj
x [TV 61, 7)inverse-x* (03w, *) [ [ [TV (Yisl05: 03)-
j=1 j=1i=1

To calculate the conditional posterior distribution of p?, note that

p(p*0, 1,7, 0%, 1, Y) = p(p*|o?,v)
x p(p*[V)p(a?|v, p?)

J
v
x p(p*|v) [ (0*)"/? exp {—02/)2}
j=1 J
J v J 1
=) T ep =[5 = | P
j=1 "7
Setting p(p?|v) = p%]l (0,00) (p?) yields
J v J 1
p(p*10,0% v, Y) o< ()T Mexp { = | 5D =5 | 27 ¢ Lo.oo)(P):
j=1 "7
It is immediate from the previous expression that
Jv Jv
2 2 2
0 Y ~G N
p| 7#77— 70- 7V7 amma<a 2’5 2p/\2>’
where
2 J

-7 1
>j—1 o
Note that E(p?|0, u,72,02,v,Y) = p?, which is the harmonic mean of the within-variances.
Thus p? models to the “common” within-variance from which the within-variance of each group

deviates.
At this point, we could set the value of v to its empirical estimate U and get a sample

posterior for all the other parameters using Gibbs sampler.
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Algorithm 4 Gibbs sampler for the extended hierarchical model with fixed v.
Input: Sample y;; (¢ =1,...,n5, j =1,...,J), observed groups’ averages ¥.;, punctual esti-
mates for 0;, e.g. 0; = y.j, punctual estimate for u, e.g.

7
21§/ S5

Ia = T )
/o2
Ej:l n]/sj
punctual estimates for 032-, e.g. &JZ = 3]2-, and posterior sample size S.

Output: Posterior sample for 6, 4, 79, o1, p® and Y[ (j=1,....J, s =1,...,9).
Set 07 = b, u© =, 0\ = 5,
for s=1,...,5do
~2(s J s—1 s— 2
Compute 72() = -1+ >im1 (93( ) s
Simulate 72(*) ~ Inverse-x? (J -1, %2(8))
~(s) J (s—1)
Compute fi(*) = %ijl 0;
Simulate p(®) ~ N (ﬂ(s)’TQ(S)/J)
Compute p**) = J/ 331~

o2t
J
Simulate p*(*) ~ Gamma (a =L g= 2{)‘]2%)
for j=1,...,J do
Compute
ng — 1
i) _ ¥ T i
) — - -
! 0'27(]-5) + 7'2(5)
and 1
(s) _
R ——

1
o2(s) + 72(s)

Simulate 61 ~ A (6, V)
Compute

and

(s) N 2(5))

~ Inverse-x?(v + n;, G5
Simulate Yj(-s) ~N (0](-5), 02(5)>
end for
end for

Simulate 032-
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5.4 Conditional posterior for v

To calculate the conditional posterior distribution of v, note that

p(|0, 1,72, 0% p*, Y) = p(v|o?, p?)
x p(v|p*)p(o?|v, p?)

let be w = v/2, then

W o e PP T2
P07 LX) 1) 5 () exp{—Jwﬁz} (0%)

This is an intricate expression, which gives little guide for the selection of a prior distribution
for v yielding a known distribution. We have considered different prior distributions for v of the
form p(v[p?) o< v (g o) (v) for different values of h > 0, such as h = 3,2,1.5 or 1.

The impact of h in the posterior distribution. We have seen in simulations that larger
values for h tend to generate a posterior distribution for v concentrated in lower values and,
thus, being models closer to the case where the within-variances share no-common structure.
Therefore, larger values for h would make each within-variance 0]2- to concentrate in the ob-
served sample variance s? at the cost of increasing the uncertainty in their estimates, since
the observations have less impact on other groups beyond the one they belong to. Meanwhile,
smaller values for h have the opposite effect, generating models that are closer to the case where
a single common within-variance o2 is considered for all the groups. The limit case h — 0,
corresponding with the prior p(v) = 1 (9 o) (), generates an improper monotonically increasing
posterior for v, which makes all the within-variances to concentrate in the common-variance
p?. Thus, lower values for h would introduce a bias from the observed sample variance, but
would reduce the uncertainty in the common estimate. Therefore the value for A models the
well-known bias-variance compromise for the within-variances.
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Algorithm 5 Gibbs sampler for the extended hierarchical model.

Input: Sample y;; (¢ =1,...,n5, j =1,...,J), observed groups’ averages ¥.;, punctual esti-
mates for 0;, e.g. 0; = y.j, punctual estimate for u, e.g.

J

21§/ S5

J )
Ej:l ”j/b’?

= 3]2-, punctual estimate for p?, e.g.

fi =

punctual estimates for 032-, e.g. Ajz

and posterior sample size S.
(s)

Output: Posterior sample for 6, MONFECN J](»S), v p(®) and Yj(s) G=1,...,J,s=1,...,9).

Set 610 = 0;, 4@ = 4, 01 = 6, pO = 5
for s=1,...,5 do
_ 2
Compute 72(5) = ﬁ ijl <0](.5 n_ M(sfl))
Simulate 72() ~ Inverse-y? (J -1, %2(5))
Compute /i(*) = %ijl 03(.5_1)
Simulate p(®) ~ N (28, 72(5) /)
Simulate () ~ p(v|g2(=1) p2(s=1))
Compute 52) = J/ 7| ==
J

Simulate pz(s) ~ Gamma (a = JVQ(S) B= j;iiﬁ)
for j=1,...,J do
Compute
n; — 1
A@_ﬁﬁ%+ﬁﬁw

0y = s
’ sy + e
and X
(s)
Vvej Ny + 1
o2G-D T 720
; (s) 5(s) 1,(s)
Simulate 0]. ~,/\/'<9j ,ng )
Compute
n;
s) _ 1 A )2
=y 2 (=)
i=1
and .
. 2(s) V(8 p2(s) njvjs
g . =
! V() +n;
Simulate O'JQ-(S) ~ Inverse—X2(v(s) +ngj, &?(S))
] (s) (8) _2(s
Simulate Y ; N,/\/'<0j o ))
end for
end for

18
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Figure 5: Relation between models.
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A Appendix

A.1 Assessing convergence of an MCMC

Since we know the form of the joint posterior density (except for some constant), we can estimate
the log-posterior for each simulated sample from the Gibss sampler, and monitor this estimand
to infer if we are already simulating from the stationary distribution.

Together with the graph of the log-posterior, we can use the potential scale reduction ap-
proach that we explain now (see BDA page 284).

,—[ Between- and within-sequences Variances] S
Suppose that we have simulated m chains, each of length n, and let be ¥; (i = 1,...,n;
j = 1,...,m) any scalar estimand that we wish to monitor. Then, we define the

between- and within-sequences variances, B and W, as

m n m
n = = _ 1 _ 1 _
B=——2 (= 0.)% where oy = =3 0y, . = — 3 9,
Jj=1 ) J=1
W = 1 ¢ 2 wh o 1 S T2
= EZSJ-, where s7 = — Z(wm — ).
]:1 =1
r—[ Potential scale reductionj <

The marginal posterior variance of the estimand, V(1|Y) can be estimated through

THy) = 21

1
W+ —B.

n
The potential scale reduction is then defined as

5 [VHylY
oy W)

w
which declines to 1 as n — oco. If the potential scale reduction is high, then we have
reason to believe that proceeding with further simulations may improve the inference
about the target distribution of the associated scalar estimand.

A.2 Technical note about the scaled inverse-y?

It happens often that the scaled inverse-x? is not available in some libraries, however, if the
inverse-gamma is available in the library, we can use the well known relation

v v
Inverse-x2(v, s°) = Inverse-Gamma (o = =, 3 = —s°
’ 27 9 ’

where « is the parameter of shape and S the parameter of scale.
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