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Assume that there are J groups, that we count with a sample Yij , i = 1, . . . , nj for the j-th
group, where each observation is independent from other observations within the same group
and from observations of other groups, and that Yij |θj , σ2j ∼ N (θj , σ

2
j ) for i = 1, . . . , nj and

j = 1, . . . , J .

1 Nonhierarchical models with σ2 known

Before moving to the hierarchical model, we first consider two simple nonhierarchical models–
estimating the mean of each group independently, and complete pooling. Assume for this section
that the variance within each group σ2j is known.

1.1 Separate estimates

Yij

σ2jθj

Figure 1: Separate estimates.

Denote by

Ȳ·j =
1

nj

nj∑
i=1

Yij

the sample mean of each group j with variance σ̄2j = σ2j /nj , then

Ȳ·j |θj , σ2j ∼ N (θj , σ̄
2
j ).

Because we are considering all the within-group variances σj ’s to be known, the likelihood
of our model is determined just by the likelihood of each Ȳ·j , assume that all the θj ’s are
independent and p(θj |σ2) ∝ 1 (−∞,∞)(θj), then the posterior distribution for each θj is

θj |σ2,Y ∼ N (Ȳ·j , σ̄
2
j ).

And
Yj |σ2,Y ∼ N (Ȳ·j , σ

2
j + σ̄2j ),

where Yj represents an observation within group j.
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1.2 Pooled estimate

Yij

σ2θ

Figure 2: Pooled estimate.

Consider now that we restrict the values θj to be equal to a common mean θ and all the values
σ2j to be equal to some common known σ2. Thus

Ȳ·j |θ, σ2 ∼ N (θ, σ̄2j ),

where σ̄2 = σ2/nj .
Assume p(θ|σ2) ∝ 1 (−∞,∞)(θ), then

p(θ|σ2,Y) ∝ exp

−1

2

J∑
j=1

(Ȳ·j − θ)2

σ̄2j

1 (−∞,∞)(θ)

= exp

−1

2

J∑
j=1

Ȳ 2
·j − 2Ȳ·jθ + θ2

σ̄2j

1 (−∞,∞)(θ)

∝ exp

−1

2

θ2 J∑
j=1

1

σ̄2j
− 2θ

J∑
j=1

Ȳ·j
σ̄2j

1 (−∞,∞)(θ).

On the other hand, since the logarithm of the posterior is a quadratic function on θ, then
θ|σ2,Y ∼ N (µ, φ2), thus

p(θ|σ2,Y) ∝ exp

{
−(θ − µ)2

2φ2

}
1 (−∞,∞)(θ)

= exp

{
−1

2

(
θ2

1

φ2
− 2θ

µ

φ2
+
µ2

φ2

)}
1 (−∞,∞)(θ)

∝ exp

{
−1

2

(
θ2

1

φ2
− 2θ

µ

φ2

)}
1 (−∞,∞)(θ).

From the last expression, we recognize

φ2 =
1∑J

j=1
1
σ̄2
j

that is, the precision is the sum of all the precisions, and

µ

φ2
=

J∑
j=1

Ȳ·j
σ̄2j

⇒ µ =

∑J
j=1

Ȳ·j
σ̄2
j∑J

j=1
1
σ̄2
j

≡ Ȳ··.
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That is,
θ|σ2,Y ∼ N (Ȳ··, φ

2),

and
Yj |σ2,Y ∼ N (Ȳ··, σ

2 + φ2).

2 Nonhierarchical models with σ2 unknown

For this section we consider the more realistic approach where the within-group variances σ2j ’s
are unknown. The objective is to determine the full conditional posterior distributions for the
parameters. Once we have deduced the full conditional posterior for all our parameters, it is
straightforward to implement the Gibbs sampler algorithm, and obtain a sample from the joint
posterior distribution.

2.1 Separate estimates

Consider the model
Yij |θj , σ2j ∼ N (θj , σ

2
j ),

with the noninformative prior

p(θ,σ2) ∝
J∏

j=1

1

σ2j
1 (−∞,∞)(θj)1 (0,∞)(σ

2
j ).

We already deduced that the conditional posterior for each θj is

θj |σ2,Y ∼ N (Ȳ·j , σ̄
2
j ).

On the other hand, note that

p(σ2j |θ,Y) ∝ 1

σ2j
1 (0,∞)(σ

2
j )

nj∏
i=1

N (Yij |θj , σ2j )

∝ 1

σ2j
1 (0,∞)(σ

2
j )

1

(σ2j )
nj/2

exp

{
− 1

2σ2j

nj∑
i=1

(Yij − θj)
2

}

= (σ2j )
−(nj/2+1) exp

{
−
nj σ̂

2
j

2σ2j

}
1 (0,∞)(σ

2),

from this expression we observe that

σ2j |θ,Y ∼ Inverse-χ2(nj , σ̂
2
j ),

where

σ̂2j =
1

nj

nj∑
i=1

(Yij − θj)
2.
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Algorithm 1 Gibbs sampler for separate models.

Input: Sample yij (i = 1, . . . , nj , j = 1, . . . , J), observed groups’ averages ȳ·j , and posterior
sample size S.

Output: Posterior sample for θ
(s)
j , σ

2(s)
j and Y

(s)
j (j = 1, . . . , J , s = 1, . . . , S).

Set θ
(0)
j = ȳ·j

for s = 1, . . . , S do
for j = 1, . . . , J do

Compute σ̂
2(s)
j = 1

nj

∑nj

i=1

(
yij − θ

(s−1)
j

)2

Simulate σ
2(s)
j ∼ Inverse-χ2

(
nj , σ̂

2(s)
j

)
Simulate θ

(s)
j ∼ N

(
ȳ·j , σ

2(s)
j /nj

)
Simulate Y

(s)
j ∼ N

(
θ
(s)
j , σ

2(s)
j

)
end for

end for

From the simulated sample we can estimate posterior intervals. Overlapping intervals for
the θ’s and the σ’s might be considered as evidence against the use of separate models in favor
of a pooled estimate.

2.2 Pooled estimate

Consider the model where all the groups share the same mean and variance, that is

Yij |θ, σ2 ∼ N (θ, σ2),

and the noninformative prior given by

p(θ, σ2) ∝ 1

σ2
1 (−∞,∞)(θ)1 (0,∞)(σ

2).

We already deduced that the conditional posterior for θ is

θ|σ2,Y ∼ N (Ȳ··, φ
2),

where

Ȳ·· =

∑J
j=1

Ȳ·j
σ̄2
j∑J

j=1
1
σ̄2
j

,

φ2 =
1∑J

j=1
1
σ̄2
j

and

σ̄2j =
σ2

nj
, j = 1, . . . , J.

On the other hand, note that

p(σ2|θ,Y) ∝ 1

σ2
1 (0,∞)(σ

2)

J∏
j=1

nj∏
i=1

N (Yij |θ, σ2),
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where we can deduced easily that

σ2|θ,Y ∼ Inverse-χ2(n, σ̂2),

where n =
∑J

j=1 nj , and

σ̂2 =
1

n

J∑
j=1

nj∑
i=1

(Yij − θ)2.

Algorithm 2 Gibbs sampler for the pooled model.

Input: Sample yij (i = 1, . . . , nj , j = 1, . . . , J), observed groups’ averages ȳ·j , observed groups’
sample variances s2j , and posterior sample size S.

Output: Posterior sample for θ
(s)
j , σ

2(s)
j and Y

(s)
j (j = 1, . . . , J , s = 1, . . . , S).

Set

θ(0) =

∑J
j=1

ȳ·j
s2j/nj∑J

j=1
1

s2j/nj

for s = 1, . . . , S do

Compute σ̂2(s) = 1
n

∑J
j=1

∑nj

i=1

(
yij − θ(s−1)

)2
Simulate σ

2(s)
1 , . . . , σ

2(s)
J ∼ Inverse-χ2

(
n, σ̂2(s)

)
Compute

θ̂(s) =

∑J
j=1

ȳ·j

σ
2(s)
j /nj∑J

j=1
1

σ
2(s)
j /nj

and

φ2(s) =
1∑J

j=1
1

σ
2(s)
j /nj

Simulate θ
(s)
1 , . . . , θ

(s)
J ∼ N

(
θ̂(s), φ2(s)

)
Simulate Y

(s)
j ∼ N

(
θ
(s)
j , σ

2(s)
j

)
, j = 1, . . . , J

end for
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3 Hierarchical model with common σ2 known

Yij

σ2θj

τ2µ

Figure 3: Hierarchical model with common σ2.

Let be Yij |θj , σ2 ∼ N (θj , σ
2) for i = 1, . . . , nj and j = 1, . . . , J , then Ȳ·j |θj , σ2 ∼ N (θj , σ̄

2
j ),

where σ̄2j = σ2/nj . For the convenience of a conjugate model, we assume

θj |µ, τ2 ∼ N (µ, τ2).

Due to the conjugacy, we can easily determine the posterior distribution for all the θj |µ, τ2, σ2,Y,
which are independent and

θj |µ, τ2, σ2,Y ∼ N (θ̂j , Vθj ),

where

θ̂j =

1
σ̄2
j
Ȳ·j +

1
τ2
µ

1
σ̄2
j
+ 1

τ2

and

Vθj =
1

1
σ̄2
j
+ 1

τ2

.

It can also been shown easily that the posterior distribution of the observations Yj |µ, τ2, σ2,Y
are independent and

Yj |µ, τ2, σ2,Y ∼ N (θ̂j , σ
2 + Vθj ).

3.1 Empirical Bayes

To assign values for the parameters µ, τ2 and σ2, we can take an empirical approach based on
the analysis of variance. Let be

n̄ =
1

J

J∑
j=1

nj ,

the mean square within groups MSW is given by

MSW =
1

J(n̄− 1)

J∑
j=1

nj∑
i=1

(Yij − Ȳ·j)
2.

Because E(MSW |σ2) = σ2 (see page 116 of BDA 3), then an unbiased estimator for σ2 is given
by σ̂2 = MSW . Thus, in the case where σ2 is not known, we could use σ̂2 and act as if it was
the real value of σ2.
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On the other hand, let be

Ȳ·· =

∑J
j=1

nj

σ2 Ȳ·j∑J
j=1

nj

σ2

,

the mean square between groups MSB is given by

MSB =
1

J − 1

J∑
j=1

nj∑
i=1

(Ȳ·j − Ȳ··)
2.

Because E(MSB|σ2, τ2) = n̄τ2 + σ2 (see page 116 of BDA 3), then unbiased estimators for µ
and τ2 are given by µ̂ = Ȳ·· and

τ̂2 =
MSB −MSW

n̄
.

3.2 Full Bayesian approach

Instead of using an empirical approach to assign values for µ, τ2 and σ2 based on point estimates,
from a fully Bayesian approach we should assign a joint prior distribution p(µ, τ |σ2). Because we
are considering σ2 known, then the likelihood of the model can be represented by the sufficient
statistics Ȳ·j , which satisfy that Ȳ·j |θj , σ2 ∼ N (θj , σ̄

2
j ). Considering θj |µ, τ2 ∼ N (µ, τ2), then

Ȳ·j |µ, τ2, σ2 ∼ N (µ, σ̄2j + τ2).

The posterior distribution of µ and τ could be calculated from

p(µ, τ |σ2,Y) ∝ p(µ, τ |σ2)
J∏

j=1

p(Ȳ·j |µ, τ, σ2)

∝ p(µ, τ |σ2) exp

−1

2

J∑
j=1

(Ȳ·j − µ)2

σ̄2j + τ2

 .

3.2.1 Conditional posterior distribution of µ, p(µ|τ, σ2,Y)

Consider p(µ, τ |σ2) = p(µ|τ, σ2)p(τ |σ2) and take p(µ|τ, σ2) ∝ 1 (−∞,∞)(µ), thus

p(µ, τ |σ2,Y) ∝ p(τ |σ2) exp

−1

2

J∑
j=1

(Ȳ·j − µ)2

σ̄2j + τ2

1 (−∞,∞)(µ),

then

p(µ|τ, σ2,Y) ∝ exp

−1

2

J∑
j=1

(Ȳ·j − µ)2

σ̄2j + τ2

1 (−∞,∞)(µ).

From our analysis on the pooled estimate, we recognize immediately that

µ|τ, σ2,Y ∼ N (µ̂, Vµ),

where

µ̂ =

∑J
j=1

Ȳ·j
σ̄2
j+τ2∑J

j=1
1

σ̄2
j+τ2

, and Vµ =
1∑J

j=1
1

σ̄2
j+τ2

.
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3.2.2 E(θj |τ, σ2,Y) and V(θj |τ, σ2,Y)

Using these expressions, we can compute

E(θj |τ, σ2,Y) = Eµ|τ,σ2,Y[E(θj |µ, τ2, σ2,Y)]

= Eµ|τ,σ2,Y[θ̂j ]

= Eµ|τ,σ,2Y

 1
σ̄2
j
Ȳ·j +

1
τ2
µ

1
σ̄2
j
+ 1

τ2


=

1
σ̄2
j
Ȳ·j +

1
τ2
µ̂

1
σ̄2
j
+ 1

τ2

,

and

V(θj |τ, σ2,Y) = Eµ|τ,σ2,Y[V(θj |µ, τ2, σ2,Y)] + Vµ|τ,σ2,Y[E(θj |µ, τ2, σ2,Y)]

= Eµ|τ,σ2,Y[Vθj ] + Vµ|τ,σ2,Y[θ̂j ]

= Eµ|τ,σ2,Y

 1
1
σ̄2
j
+ 1

τ2

+ Vµ|τ,σ2,Y

 1
σ̄2
j
Ȳ·j +

1
τ2
µ

1
σ̄2
j
+ 1

τ2


=

1
1
σ̄2
j
+ 1

τ2

+

(
1
τ2

)2
Vµ(

1
σ̄2
j
+ 1

τ2

)2

Because θj |τ2, σ2,Y follows a normal distribution, we conclude that

θj |τ2, σ2,Y ∼ N (E(θj |τ, σ2,Y),V(θj |τ, σ2,Y))

and
Yj |τ2, σ2,Y ∼ N (E(θj |τ, σ2,Y), σ2 + V(θj |τ, σ2,Y)).

Note that E(θj |τ, σ2,Y) −−−→
τ→0

µ̂ and µ̂ −−−→
τ→0

∑J
j=1

Ȳ·j
σ̄2
j∑J

j=1
1

σ̄2
j

≡ Ȳ··, while V(θj |τ, σ2,Y) −−−→
τ→0

Vµ and

Vµ −−−→
τ→0

1∑J
j=1

1

σ̄2
j

≡ φ2. On the other hand, E(θj |τ, σ2,Y) −−−→
τ→∞

Ȳ·j , while V(θj |τ, σ2,Y) −−−→
τ→∞

σ̄2j .
This result is consistent from a classical analysis of variance, if the ratio of between to within

mean squares is significantly greater than 1, then the analysis of variance suggests separate
estimates, θ̂j = Ȳ·j , at the same time this would also mean that τ is large. If the ratio of mean

squares is not ‘statistical significant’ different from 1, then pooling is reasonable and θ̂j = Ȳ··,
for all j, which would also mean that the F test cannot reject the hypothesis τ = 0. From these
observations we can conclude that the Bayesian analysis under the hierarchical model provides
a compromise that combines information from all the groups without assuming all the θj ’s to
be equal.
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3.2.3 Conditional posterior distribution of τ , p(τ |σ2,Y)

Because p(µ, τ |σ2,Y) = p(µ|τ, σ2,Y)p(τ |σ2,Y), then

p(τ |σ2,Y) =
p(µ, τ |σ2,Y)

p(µ|τ, σ2,Y)

∝
p(µ, τ |σ2)

∏J
j=1 p(Ȳ·j |µ, τ2, σ2)

p(µ|τ, σ2,Y)

=
p(µ|τ, σ2)p(τ |σ2)

∏J
j=1N (Ȳ·j |µ, σ̄2j + τ2)

N (µ|µ̂, Vµ)
,

because we assume p(µ|τ, σ2) ∝ 1 (−∞,∞)(µ), then

p(τ |σ2,Y) ∝
p(τ |σ2)

∏J
j=1N (Ȳ·j |µ, σ̄2j + τ2)

N (µ|µ̂, Vµ)
.

Remember that all the factors of µ must cancel when the expression is simplified. This means
that the identity must hold for any value of µ, in particular it holds if we set µ to µ̂, which
makes evaluation of the expression simple,

p(τ |σ2,Y) ∝
p(τ |σ2)

∏J
j=1N (Ȳ·j |µ̂, σ̄2j + τ2)

N (µ̂|µ̂, Vµ)

∝ p(τ |σ2)V 1/2
µ

J∏
j=1

(σ̄2j + τ2)−1/2 exp

{
− (Ȳ·j − µ̂)

2(σ̄2j + τ2)

}
.

To complete the analysis we must assign a prior distribution for τ . However, we must examine
the posterior and ensure it has a finite integral for the chosen prior. Remember that µ̂ −−−→

τ→0
Ȳ··

and Vµ −−−→
τ→0

φ2. Then, everything multiplying p(τ |σ2) approaches a nonzero constant limit as

τ tends to zero. Thus, the behavior of the posterior density near τ = 0 is determined by the
prior density. The usual ‘noninformative’ function p(τ |σ2) ∝ 1

τ 1 (0,∞)(τ) is not integrable for
any small interval including τ = 0 and yields a nonintegrable posterior density. Meanwhile, the
uniform prior distribution p(τ |σ2) ∝ 1 (0,∞)(τ) yields a proper posterior density.

Thus, making p(τ |σ2) ∝ 1 (0,∞)(τ), the conditional posterior distribution of τ is given by

p(τ |σ2,Y) ∝ V 1/2
µ

J∏
j=1

(σ̄2j + τ2)−1/2 exp

{
− (Ȳ·j − µ̂)

2(σ̄2j + τ2)

}
1 (0,∞)(τ).

Furthermore, let be τ̂ the MAP estimate of τ then, under regularity conditions, an approximate
interval of probability (1− α)× 100% for τ is given byτ :

p(τ |σ2,Y)

p(τ̂ |σ2,Y)
≥ exp

−
q1−α
χ2
1

2


 .

4 Hierarchical model with common σ2 unknown

Unfortunately, for most of the practical problems σ2 is unknown. Because σ is a scalar parameter
of our observations, we can take a uniform prior distribution for log σ. Then, using the priors
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previously defined for the other parameters, we get the following joint prior

p(θ, µ, τ, log σ) ∝ 1 (−∞,∞)(µ)1 (0,∞)(τ)1 (−∞,∞)(log σ)
J∏

j=1

N (θj |µ, τ2)

or, equivalently

p(θ, µ, τ2, σ2) ∝ 1

τ

1

σ2
1 (−∞,∞)(µ)1 (0,∞)(τ

2)1 (0,∞)(σ
2)

J∏
j=1

N (θj |µ, τ2).

Thus, the joint posterior is given by

p(θ, µ, τ2, σ2|Y) ∝ 1

τ

1

σ2
1 (−∞,∞)(µ)1 (0,∞)(τ

2)1 (0,∞)(σ
2)

J∏
j=1

N (θj |µ, τ2)
J∏

j=1

nj∏
i=1

N (Yij |θj , σ2).

Conditional posterior for θj. We already deduced that the posterior distribution of θj |µ, τ2, σ2,Y
are independent and

θj |µ, τ2, σ2,Y ∼ N (θ̂j , Vθj ),

where

θ̂j =

1
σ̄2
j
Ȳ·j +

1
τ2
µ

1
σ̄2
j
+ 1

τ2

and

Vθj =
1

1
σ̄2
j
+ 1

τ2

.

Conditional posterior for µ.

p(µ|θ, τ2, σ2,Y) ∝ 1 (−∞,∞)(µ)

J∏
j=1

N (θj |µ, τ2)

∝ exp

−1

2

J∑
j=1

(θj − µ)2

τ2

1 (−∞,∞)(µ).

From our analysis on the pooled model, it is immediate that

µ|θ, τ2, σ2,Y ∼ N (µ̂, τ2/J),

where µ̂ = 1
J

∑J
j=1 θj .

Conditional posterior for σ2.

p(σ2|θ, µ, τ2,Y) ∝ 1

σ2
1 (0,∞)(σ

2)

J∏
j=1

nj∏
i=1

N (Yij |θj , σ2)

∝ 1

σ2
1 (0,∞)(σ

2)
1

(σ2)n/2
exp

− 1

2σ2

J∑
j=1

nj∑
i=1

(Yij − θj)
2


= (σ2)−(n/2+1) exp

{
−nσ̂

2

2σ2

}
1 (0,∞)(σ

2).
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Thus,
σ2|θ, µ, τ2,Y ∼ Inverse-χ2(n, σ̂2),

where n =
∑J

j=1 nj , and

σ̂2 =
1

n

J∑
j=1

nj∑
i=1

(Yij − θj)
2.

Conditional posterior for τ2.

p(τ2|θ, µ, σ2,Y) ∝ 1

(τ2)1/2
1 (0,∞)(τ

2)
J∏

j=1

N (θj |µ, τ2)

∝ 1

(τ2)1/2
1

(τ2)J/2
exp

− 1

2τ2

J∑
j=1

(θj − µ)2

1 (0,∞)(τ
2)

= (τ2)−(J−1
2

+1) exp

{
−(J − 1)τ̂2

2τ2

}
1 (0,∞)(τ

2).

Thus,
τ2|θ, µ, σ2,Y ∼ Inverse-χ2(J − 1, τ̂2),

where

τ̂2 =
1

J − 1

J∑
j=1

(θj − µ)2.
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Algorithm 3 Gibbs sampler for the hierarchical model with common σ2 unknown.

Input: Sample yij (i = 1, . . . , nj , j = 1, . . . , J), observed groups’ averages ȳ·j , punctual esti-

mates for θj , e.g. θ̂j = ȳ·j , punctual estimate for µ, e.g.

µ̂ =

∑J
j=1 ȳ·jnj/s

2
j∑J

j=1 nj/s
2
j

,

and posterior sample size S.

Output: Posterior sample for θ
(s)
j , µ(s), τ (s), σ(s) and Y

(s)
j (j = 1, . . . , J , s = 1, . . . , S).

Set θ
(0)
j = θ̂j and µ(0) = µ̂

for s = 1, . . . , S do

Compute τ̂2(s) = 1
J−1

∑J
j=1

(
θ
(s−1)
j − µ(s−1)

)2

Simulate τ2(s) ∼ Inverse-χ2
(
J − 1, τ̂2(s)

)
Compute µ̂(s) = 1

J

∑J
j=1 θ

(s−1)
j

Simulate µ(s) ∼ N
(
µ̂(s), τ2(s)/J

)
Compute σ̂2(s) = 1

n

∑J
j=1

∑nj

i=1

(
yij − θ

(s−1)
j

)2

Simulate σ2(s) ∼ Inverse-χ2
(
n, σ̂2(s)

)
for j = 1, . . . , J do

Compute

θ̂
(s)
j =

nj

σ2(s) ȳ·j +
1

τ2(s)
µ(s)

nj

σ2(s) +
1

τ2(s)

and

V
(s)
θj

=
1

nj

σ2(s) +
1

τ2(s)

Simulate θ
(s)
j ∼ N

(
θ̂
(s)
j , V

(s)
θj

)
Simulate Y

(s)
j ∼ N

(
θ
(s)
j , σ2(s)

)
end for

end for
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5 Hierarchical model with non-common σ2

Yij

σ2j

ρ2ν

θj

τ2µ

Figure 4: Hierarchical model with non-common σ2.

Up to now, we have consider for the hierarchical model that all the groups have the same within-
variance σ2. In this section we consider the case where these variances are not the same, but
they are not completely independent either. As we did with the groups’ means, we assume that
these variances share a common structure, yielding a hierarchical model for the within-variances.

Consider that Yij |θj , σ2j ∼ N (θj , σ
2
j ). For the simplicity of a conjugate model, we consider

θj |µ, τ2 ∼ N (µ, τ2),

and
σ2j |ν, ρ2 ∼ Inverse-χ2(ν, ρ2).

It is easy to see that the conditional posterior distributions for each θj , µ and τ2 are the same
as those calculated in the previous section. Thus, we only have to determine the conditional
posterior distributions for σ2j , ν and ρ2.

5.1 Conditional posterior for σ2
j

Due to the conjugacy property of the model,

σ2j |θ, ν, ρ2,Y ∼ Inverse-χ2(νj , σ̂
2
j ),

where νj = ν + nj ,

σ̂2j =
νρ2 + njvj
ν + nj

,

and

vj =
1

nj

nj∑
i=1

(Yij − θj)
2.

Note that

E(σ2j |θ, ν, ρ2,Y) =
νj

νj − 2
σ̂2j

=
νρ2 + njvj
ν + nj − 2

,

13



and

V(σ2j |θ, ν, ρ2,Y) =
2ν2j

(νj − 2)2(νj − 4)
σ̂4j

=
2(νρ2 + njvj)

2

(ν + nj − 2)2(ν + nj − 4)
,

from this expressions is easy to see that in the limit case when ν → ∞, E(σ2j |θ, ν, ρ2,Y) −−−→
ν→∞

ρ2

and V(σ2j |θ, ν, ρ2,Y) −−−→
ν→∞

0. On the other hand, if ν → 0, then σ2j |θ, ν, ρ2,Y ∼ Inverse-χ2(nj , vj),

corresponding with the separate estimates.

5.2 Estimating ρ2 and ν

Before establishing prior distributions for ρ2 and ν, we present a practical approach to get punc-
tual estimates for these parameters that we have seen in simulations to be a good approximation
for their real values.

Since σ2 ∼ Inverse-χ2(ν, ρ2), then

E(σ2|ν, ρ2) = ν

ν − 2
ρ2

and

V(σ2|ν, ρ2) = 2ν2

(ν − 2)2(ν − 4)
ρ4.

Let be Es2 the average of the observed sample within-group variances s21, . . . , s
2
J and Vs2 their

variance, thus using the method of moments we have

Es2 =
ν̂

ν̂ − 2
ρ̂2 ⇒ ρ̂2 =

ν̂ − 2

ν̂
Es2 ,

and

Vs2 =
2��̂ν

2

�����
(ν̂ − 2)2(ν̂ − 4)

�����
(ν̂ − 2)2

��̂ν
2

(Es2)
2

⇒ ν̂ =
2(Es2)

2

Vs2
+ 4,

thus

ρ̂2 =

(
1− 2Vs2

2(Es2)
2 + 4Vs2

)
Es2

=

(
2(Es2)

2 + 2Vs2

2(Es2)
2 + 4Vs2

)
Es2 .

We could set the value of ρ2 in this estimate and plot E(σ2j |θ, ν, ρ2,Y) and V(σ2j |θ, ν, ρ2,Y)
as functions of ν. In case that we don’t know the value for θ, we could substitute vj by the
sample variance of the group s2j .
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5.3 Conditional posterior for ρ2

The joint distribution is now given by

p(θ, µ, τ2,σ2, ν, ρ2|Y) ∝1

τ
1 (−∞,∞)(µ)1 (0,∞)(τ

2)p(ν)p(ρ2)

×
J∏

j=1

N (θj |µ, τ2)Inverse-χ2(σ2j |ν, ρ2)
J∏

j=1

nj∏
i=1

N (Yij |θj , σ2j ).

To calculate the conditional posterior distribution of ρ2, note that

p(ρ2|θ, µ, τ2,σ2, ν,Y) = p(ρ2|σ2, ν)

∝ p(ρ2|ν)p(σ2|ν, ρ2)

∝ p(ρ2|ν)
J∏

j=1

(ρ2)ν/2 exp

{
− ν

2σ2j
ρ2

}

= p(ρ2|ν)(ρ2)
Jν
2 exp

−

ν

2

J∑
j=1

1

σ2j

 ρ2

 .

Setting p(ρ2|ν) = 1
ρ2
1 (0,∞)(ρ

2) yields

p(ρ2|θ,σ2, ν,Y) ∝ (ρ2)
Jν
2
−1 exp

−

ν

2

J∑
j=1

1

σ2j

 ρ2

1 (0,∞)(ρ
2).

It is immediate from the previous expression that

ρ2|θ, µ, τ2,σ2, ν,Y ∼ Gamma

(
α =

Jν

2
, β =

Jν

2ρ̂2

)
,

where

ρ̂2 =
J∑J

j=1
1
σ2
j

.

Note that E(ρ2|θ, µ, τ2,σ2, ν,Y) = ρ̂2, which is the harmonic mean of the within-variances.
Thus ρ2 models to the “common” within-variance from which the within-variance of each group
deviates.

At this point, we could set the value of ν to its empirical estimate ν̂ and get a sample
posterior for all the other parameters using Gibbs sampler.

15



Algorithm 4 Gibbs sampler for the extended hierarchical model with fixed ν.

Input: Sample yij (i = 1, . . . , nj , j = 1, . . . , J), observed groups’ averages ȳ·j , punctual esti-

mates for θj , e.g. θ̂j = ȳ·j , punctual estimate for µ, e.g.

µ̂ =

∑J
j=1 ȳ·jnj/s

2
j∑J

j=1 nj/s
2
j

,

punctual estimates for σ2j , e.g. σ̂
2
j = s2j , and posterior sample size S.

Output: Posterior sample for θ
(s)
j , µ(s), τ (s), σ

(s)
j , ρ(s) and Y

(s)
j (j = 1, . . . , J , s = 1, . . . , S).

Set θ
(0)
j = θ̂j , µ

(0) = µ̂, σ
(0)
j = σ̂j

for s = 1, . . . , S do

Compute τ̂2(s) = 1
J−1

∑J
j=1

(
θ
(s−1)
j − µ(s−1)

)2

Simulate τ2(s) ∼ Inverse-χ2
(
J − 1, τ̂2(s)

)
Compute µ̂(s) = 1

J

∑J
j=1 θ

(s−1)
j

Simulate µ(s) ∼ N
(
µ̂(s), τ2(s)/J

)
Compute ρ̂2(s) = J/

∑J
j=1

1

σ
2(s−1)
j

Simulate ρ2(s) ∼ Gamma
(
α = Jν

2 , β = Jν
2ρ̂2(s)

)
for j = 1, . . . , J do

Compute

θ̂
(s)
j =

nj

σ2(s) ȳ·j +
1

τ2(s)
µ(s)

nj

σ2(s) +
1

τ2(s)

and

V
(s)
θj

=
1

nj

σ2(s) +
1

τ2(s)

Simulate θ
(s)
j ∼ N

(
θ̂
(s)
j , V

(s)
θj

)
Compute

v
(s)
j =

1

nj

nj∑
i=1

(
yij − θ

(s)
j

)2

and

σ̂
2(s)
j =

νρ2(s) + njv
(s)
j

ν + nj

Simulate σ
2(s)
j ∼ Inverse-χ2(ν + nj , σ̂

2(s)
j )

Simulate Y
(s)
j ∼ N

(
θ
(s)
j , σ2(s)

)
end for

end for
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5.4 Conditional posterior for ν

To calculate the conditional posterior distribution of ν, note that

p(ν|θ, µ, τ2,σ2, ρ2,Y) = p(ν|σ2, ρ2)

∝ p(ν|ρ2)p(σ2|ν, ρ2)

∝ p(ν|ρ2)
J∏

j=1

(ν/2)ν/2

Γ(ν/2)
(ρ2)ν/2(σ2j )

−ν/2 exp

{
−νρ

2

2σ2j

}

= p(ν|ρ2)(ν/2)
Jν/2

ΓJ(ν/2)
(ρ2)Jν/2 exp

−νρ
2

2

J∑
j=1

1

σ2j


J∏

j=1

(σ2j )
−ν/2,

let be ω = ν/2, then

p(ν|θ, µ, τ2,σ2, ρ2,Y) ∝ p(ν|ρ2) ωJω

ΓJ(ω)
(ρ2)Jω exp

{
−Jωρ

2

ρ̂2

} J∏
j=1

(σ2j )
−ω

This is an intricate expression, which gives little guide for the selection of a prior distribution
for ν yielding a known distribution. We have considered different prior distributions for ν of the
form p(ν|ρ2) ∝ ν−h

1 (0,∞)(ν) for different values of h > 0, such as h = 3, 2, 1.5 or 1.

The impact of h in the posterior distribution. We have seen in simulations that larger
values for h tend to generate a posterior distribution for ν concentrated in lower values and,
thus, being models closer to the case where the within-variances share no-common structure.
Therefore, larger values for h would make each within-variance σ2j to concentrate in the ob-

served sample variance s2j at the cost of increasing the uncertainty in their estimates, since
the observations have less impact on other groups beyond the one they belong to. Meanwhile,
smaller values for h have the opposite effect, generating models that are closer to the case where
a single common within-variance σ2 is considered for all the groups. The limit case h → 0,
corresponding with the prior p(ν) = 1 (0,∞)(ν), generates an improper monotonically increasing
posterior for ν, which makes all the within-variances to concentrate in the common-variance
ρ2. Thus, lower values for h would introduce a bias from the observed sample variance, but
would reduce the uncertainty in the common estimate. Therefore the value for h models the
well-known bias-variance compromise for the within-variances.
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Algorithm 5 Gibbs sampler for the extended hierarchical model.

Input: Sample yij (i = 1, . . . , nj , j = 1, . . . , J), observed groups’ averages ȳ·j , punctual esti-

mates for θj , e.g. θ̂j = ȳ·j , punctual estimate for µ, e.g.

µ̂ =

∑J
j=1 ȳ·jnj/s

2
j∑J

j=1 nj/s
2
j

,

punctual estimates for σ2j , e.g. σ̂
2
j = s2j , punctual estimate for ρ2, e.g.

ρ̂2 =
J∑J

j=1
1
σ2
j

and posterior sample size S.

Output: Posterior sample for θ
(s)
j , µ(s), τ (s), σ

(s)
j , ν(s), ρ(s) and Y

(s)
j (j = 1, . . . , J , s = 1, . . . , S).

Set θ
(0)
j = θ̂j , µ

(0) = µ̂, σ
(0)
j = σ̂j , ρ

(0) = ρ̂
for s = 1, . . . , S do

Compute τ̂2(s) = 1
J−1

∑J
j=1

(
θ
(s−1)
j − µ(s−1)

)2

Simulate τ2(s) ∼ Inverse-χ2
(
J − 1, τ̂2(s)

)
Compute µ̂(s) = 1

J

∑J
j=1 θ

(s−1)
j

Simulate µ(s) ∼ N
(
µ̂(s), τ2(s)/J

)
Simulate ν(s) ∼ p(ν|σ2(s−1), ρ2(s−1))
Compute ρ̂2(s) = J/

∑J
j=1

1

σ
2(s−1)
j

Simulate ρ2(s) ∼ Gamma
(
α = Jν(s)

2 , β = Jν(s)

2ρ̂2(s)

)
for j = 1, . . . , J do

Compute

θ̂
(s)
j =

nj

σ2(s−1) ȳ·j +
1

τ2(s)
µ(s)

nj

σ2(s−1) +
1

τ2(s)

and

V
(s)
θj

=
1

nj

σ2(s−1) +
1

τ2(s)

Simulate θ
(s)
j ∼ N

(
θ̂
(s)
j , V

(s)
θj

)
Compute

v
(s)
j =

1

nj

nj∑
i=1

(
yij − θ

(s)
j

)2

and

σ̂
2(s)
j =

ν(s)ρ2(s) + njv
(s)
j

ν(s) + nj

Simulate σ
2(s)
j ∼ Inverse-χ2(ν(s) + nj , σ̂

2(s)
j )

Simulate Y
(s)
j ∼ N

(
θ
(s)
j , σ2(s)

)
end for

end for
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Figure 5: Relation between models.
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A Appendix

A.1 Assessing convergence of an MCMC

Since we know the form of the joint posterior density (except for some constant), we can estimate
the log-posterior for each simulated sample from the Gibss sampler, and monitor this estimand
to infer if we are already simulating from the stationary distribution.

Together with the graph of the log-posterior, we can use the potential scale reduction ap-
proach that we explain now (see BDA page 284).

Suppose that we have simulatedm chains, each of length n, and let be ψij (i = 1, . . . , n;
j = 1, . . . ,m) any scalar estimand that we wish to monitor. Then, we define the
between- and within-sequences variances, B and W , as

B =
n

m− 1

m∑
j=1

(ψ̄·j − ψ̄··)
2, where ψ̄·j =

1

n

n∑
i

ψij , ψ̄·· =
1

m

m∑
j=1

ψ̄·j ,

W =
1

m

m∑
j=1

s2j , where s
2
j =

1

n− 1

n∑
i=1

(ψij − ψ̄·j)
2.

Between- and within-sequences variances

The marginal posterior variance of the estimand, V(ψ|Y) can be estimated through

V̂+(ψ|Y) =
n− 1

n
W +

1

n
B.

The potential scale reduction is then defined as

R̂ =

√
V̂+(ψ|Y)

W
,

which declines to 1 as n → ∞. If the potential scale reduction is high, then we have
reason to believe that proceeding with further simulations may improve the inference
about the target distribution of the associated scalar estimand.

Potential scale reduction

A.2 Technical note about the scaled inverse-χ2

It happens often that the scaled inverse-χ2 is not available in some libraries, however, if the
inverse-gamma is available in the library, we can use the well known relation

Inverse-χ2(ν, s2) ≡ Inverse-Gamma
(
α =

ν

2
, β =

ν

2
s2
)
,

where α is the parameter of shape and β the parameter of scale.
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